Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 681-688    https://doi.org/10.11896/j.issn.1005-023X.2018.04.034
  计算模拟 |
颗粒填充型聚合物的导热性能与摩擦磨损性能研究
席翔, 夏延秋, 李晓鹤, 冯欣
华北电力大学能源动力与机械工程学院,北京 102206
Study on Thermal and Tribological Properties of Particles Filled Polymer Composites
XI Xiang, XIA Yanqiu, LI Xiaohe, FENG Xin
School of Energy and Mechanical Engineering, North China Electric Power University, Beijing 102206
下载:  全 文 ( PDF ) ( 2582KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用蒙特卡罗可控空间分布算法,生成网链构型的三维代表体积单元(RVE)模型,数值研究了非均匀分布下不同组分氮化铝/石墨/银导热硅脂的导热性能。制备了氮化铝、氮化铝/石墨、氮化铝/石墨/银三种填料体系的导热硅脂,并测试所有样品的热导率和体积电阻率。采用往复摩擦磨损试验机对室温下导热硅脂在钢-钢摩擦副上的载流摩擦磨损性能进行研究。利用扫描电子显微镜(SEM)观察金属表面并利用能谱分析仪(EDS)对表面元素成分进行分析。结果表明:导热填料形貌越丰富,硅脂中的导热网络越致密,氮化铝/石墨/银硅脂的最大热导率可达1.623 W/(m·K),可实现在较少填充量下获得较高热导率;氮化铝/石墨/银有限元模型模拟的结果更贴近实验测量值,可以用来预测球状/片状/棒状颗粒填充导热硅脂的导热性能;氮化铝/石墨/银导热硅脂的载流摩擦磨损性能最优,这归结于其导热性能和导电性能协同减轻电弧对金属表面的侵蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
席翔
夏延秋
李晓鹤
冯欣
关键词:  导热硅脂  氮化铝  石墨  协同效应  数值模拟  载流摩擦    
Abstract: Three-dimensional network configuration representative volume element (RVE) models were built to investigate thermal properties of conductive silicon greases containing different fractions of AlN/C/Ag by applying a Monte Carlo controllable spatial distribution algorithm. Thermal conductive silicon greases containing AlN, AlN/C and AlN/C/Ag were prepared, the thermal conductivity and the volume resistivity of all samples were experimentally measured. The electrical tribological properties were stu-died with a reciprocating friction/wear testing machine under iron/iron contacting at room temperature. SEM and EDS were utilized to observe and analyze the friction area after test. It is found that affluent morphology of conductive fillers will lead to generate compact thermal conductive network, and the thermal conductivity of AlN/C/Ag can be up to 1.623 W/(m·K), which means that the less loading of fillers can obtain higher thermal conductivity. Meanwhile, the simulation result of finite model of AlN/C/Ag has a better agreement with the experimental result at the same mass fraction, which can be used to predict thermal conductivity of silicon greases with sphere/flake/stick fillers. The optimal electrical tribological properties of AlN/C/Ag thermal conductive silicon grease are ascribed to the function of thermal conductivity and electrical conductivity combined, which can be helpful to abate the arc erosion on the friction contacts.
Key words:  thermal conductive silicon grease    AlN    graphite    synergistic effects    numerical simulation    electric friction
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TQ333.4  
基金资助: 国家自然科学基金(51575181); 北京市自然科学基金(2172053)
通讯作者:  夏延秋:男,1964年生,博士,教授,主要从事润滑油和添加剂的合成及润滑理论与技术研究 E-mail:xiayq@ncepu.edu.cn   
作者简介:  席翔:男,1993年生,硕士研究生,主要研究方向为导热复合材料、高性能润滑油脂及添加剂合成等 E-mail:xixiang199325@163.com
引用本文:    
席翔, 夏延秋, 李晓鹤, 冯欣. 颗粒填充型聚合物的导热性能与摩擦磨损性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 681-688.
XI Xiang, XIA Yanqiu, LI Xiaohe, FENG Xin. Study on Thermal and Tribological Properties of Particles Filled Polymer Composites. Materials Reports, 2018, 32(4): 681-688.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.034  或          https://www.mater-rep.com/CN/Y2018/V32/I4/681
1 Yu W, Xie H, Yin L, et al. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina[J].International Journal of Thermal Science,2015,91:76.
2 Cho E C, Huang J H, Li C P, et al. Graphene-based thermoplastic composites and their application for LED thermal management[J].Carbon,2016,102:66.
3 Cao Z, Xia Y, Xi X. Nano-montmorillonite-doped lubricating grease exhibiting excellent insulating and tribological properties[J].Friction,2017,5(2):219.
4 Ye K, Zhong Z, Ren T B. Research progress of thermal conductive silicon grease[J].China Adhesives,2013,22(12):50(in Chinese).
叶宽,钟震,任天斌.导热硅脂研究进展[J].中国胶粘剂,2013,22(12):50.
5 Yuan W H. Application in the electric field of thermal conductive silicon grease[J].China Appliance Technology,1992(6):12(in Chinese).
袁卫华.导热硅脂在电气领域中的应用[J].家用电器科技,1992(6):12.
6 Feng H, Liu J R. Development and study on a new nanocopper thermal silicon grease[J].New Chemical Materials,2006,34(11):20(in Chinese).
俸颢,刘静茹.新型纳米铜导热硅脂的研制和性能研究[J].化工新型材料,2006,34(11): 20.
7 Cui W, Zhu Y, Yuan X Y, et al. Preparation and characterization of silicon grease with high thermal conductivity and high electrical insulation[J].Rare Metal Materials and Engineering,2011(s1):443(in Chinese).
崔巍,祝渊,袁轩一,等.高导热高绝缘导热硅脂的制备及性能表征[J].稀有金属材料与工程,2011(s1):443.
8 Liu J W, Yang W B, Tian B Q, et al. Thermal conductivity of pa-raffin/HDPE/expanded graphite phase change composite[J].Polymer Materials Science and Engineering,2015(5):83(in Chinese).
刘菁伟,杨文彬,田本强,等.石蜡/高密度聚乙烯/膨胀石墨导热增强型复合相变材料热导率的影响因素[J].高分子材料科学与工程,2015(5):83.
9 Gou Y J, Liu Z L, Zhang G M, et al. Influence of multi-walled carbon nanotubes length on thermal properties of thermal grease[J].Journal of Engineering Thermophysics,2014(6):1185(in Chinese).
勾昱君,刘中良,张广孟,等.多壁碳纳米管长度对导热硅脂导热性能的影响[J].工程热物理学报,2014(6):1185.
10 Tu W Y, Zhang H Y, Lin J, et al. Preparation and properties of multilayer graphite/silicon resin thermal conductive material[J].Acta Materials Composite Sinica,2013,30(2):70(in Chinese).
涂文英,张海燕,林锦,等.多层石墨/硅树脂导热复合材料的制备与性能[J].复合材料学报,2013,30(2):70.
11 Liu K, Liu Y, Wu D M, et al. Effect of flake graphite orientation on thermal conductivity of flake graphite/polypropylene, flake graphi-te/nylon66 composites[J].Acta Materials Composite Sinica,2014,31(3):610(in Chinese).
刘科,刘颖,吴大鸣,等.鳞片石墨取向对鳞片石墨/聚丙烯、鳞片石墨/尼龙66复合材料导热性能的影响[J].复合材料学报,2014,31(3):610.
12 Liu J F, Yuan H, Du B, et al. Thermal conductivity of the carbon nanotube/silicon grease composite[J].Journal of Materials Science and Engineering,2009(2):271(in Chinese).
刘俊峰,袁华,杜波,等.碳纳米管/导热硅脂复合材料的导热性能[J].材料科学与工程学报,2009(2):271.
13 Liu Y L, Chen J R, She X X, et al. Study on preparation and thermal conductivity of silicon grease with nano-metal oxides[J].Guangdong Chemical Industry,2015,42(23):35(in Chinese).
刘彦良,陈建荣,佘晓晓,等.纳米金属氧化物导热硅脂的制备及导热性能的研究[J].广东化工,2015,42(23):35.
14 Fu Y X, Zhou J X, Mo D C, et al. Study on preparation and thermal conductivity of silicon grease with graphite sheets cooperating with aluminum oxide powders[J].Journal of Engineering Thermophysics,2015(10):2231(in Chinese).
符远翔,周君贤,莫冬传,等.石墨烯片协同氧化铝导热硅脂的制备及其导热性能研究[J].工程热物理学报,2015(10):2231.
15 Yu W, Chen L F, Qi Y, et al. Synergistic effects for enhancing composite’s thermal conductivity through the hybrid of graphene and spherical nanoparticles[J].Journal of Engineering Thermophysics,2016(11):2463(in Chinese).
于伟,陈立飞,齐玉,等.石墨烯与纳米颗粒协同提高复合体系热导率[J].工程热物理学报,2016(11):2463.
16 Liu C, Xia Y Q, Cao Z F. Conductivity and tribologicl properties of carbon nanotubes in grease[J].Tribology,2015,35(4):393(in Chinese).
刘椿,夏延秋,曹正锋.碳纳米管在润滑脂中的导电性和摩擦学性能研究[J].摩擦学学报,2015,35(4):393.
17 Ge X Y, Xia Y Q, Feng X, et al. Electrical conductivities and tribological properties of lithium salts conductive grease[J].Journal of Mechanical Engineering,2015(15):61(in Chinese).
葛翔宇,夏延秋,冯欣,等.锂盐型电力复合脂的导电性和摩擦学性能[J].机械工程学报,2015(15):61.
18 Agari Y, Uno T. Estimation on thermal conductivities of filled polymers[J].Journal of Applied Polymer Science,1986,32(7):5705.
19 Xi X, Xia Y. An investigation of thermal and tribological behaviors of PTFE-based silicon composites filled with AlN and flake graphite particles[J].Journal of Applied Polymer Science,2017,134(36):1.
20 Lewis T B, Nielsen L E. Dynamic mechanical properties of particulate-filled composites[J].Journal of Applied Polymer Science,1970,14(6):1449.
21 Zhang X G, Li X, Zhang B K, et al. Thermal conductivity of EPDM rubber filled with AlN[J].Polymer Materials Science and Enginee-ring,2015(6):92(in Chinese).
张晓光,李霄,张宝库,等.氮化铝填充三元乙丙橡胶复合材料的导热性能[J].高分子材料科学与工程,2015(6):92.
22 Zhang X G, Li X, Ji Y J, et al. Effect of the thermal conductivity of filler particles on heat conduction property of composites[J].Mate-rials Review B:Research Papers,2013,27(7):63(in Chinese).
张晓光,李霄,冀英杰,等.填充颗粒导热性对复合材料导热性能的影响[J].材料导报:研究篇,2013,27(7):63.
23 Segurado J, González C, Llorca J. A numerical investigation of the effect of particle clustering on the mechanical properties of compo-sites[J].Acta Materialia,2003,51(8):2355.
24 Liu J Q, Lu Y L, Yang H B, et al. Numerical investigation of the effect of particle spatial distribution on the thermal conductivity of composites[J].Acta Materials Composite Sinica,2011,28(5):12(in Chinese).
刘加奇,卢咏来,杨海波,等.粒子空间分布与复合材料导热性能关系的模拟研究[J].复合材料学报,2011,28(5):12.
25 Cao Z F, Xia Y Q, Chen J H. Tribological properties of vapor carbon fibers as conductive additive in grease[J].Tribology,2016,36(2):137(in Chinese).
曹正锋,夏延秋,陈俊寰.气相生长碳纤维作为润滑脂导电填料的摩擦学性能研究[J].摩擦学学报,2016,36(2):137.
26 Xi X, Xia Y Q, Cao Z F. Friction reducing and anti-wear properties and mechanism of montmorillonite as lubricant additives in lithium complex grease[J].Journal of Chinese Ceramic Society,2017,45(8):1159(in Chinese).
席翔,夏延秋,曹正锋.蒙脱石作为润滑脂添加剂的减摩抗磨性能及机理[J].硅酸盐学报,2017,45(8):1159.
27 Xi X, Xi Y Q, Cao Z F, et al. Tribology performance of high speed arc spraying Al-Ni-Mm-Co coating under lubrication conditions of different greases[J].China Mechanical Engineering,2017,28(2):215(in Chinese).
席翔,夏延秋,曹正锋,等.高速电弧喷涂Al-Ni-Mm-Co涂层在脂润滑下的摩擦磨损性能[J].中国机械工程,2017,28(2):215.
28 Chen H, Zhu D S, Qi X L, et al. Effect of graphite flake on the thermal conductivity of organic phase change materials[J].Materials Review B:Research Papers,2011,25(11):56(in Chinese).
陈宏,朱冬生,漆小玲,等.石墨片层对有机相变材料导热性能的影响[J].材料导报:研究篇,2011,25(11):56.
29 Ji S Y, Sun L M. Factors of impact of electric friction and wear on arc[J].Materials Review B:Research Papers,2011,25(7):111(in Chinese).
冀盛亚,孙乐民.载流摩擦磨损中影响起弧的因素分析[J].材料导报:研究篇,2011,25(7):111.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[4] 李明新, 魏智磊, 张彪, 赵蕾, 史忠旗. 超细等轴状AlN粉体的燃烧合成制备及机理研究[J]. 材料导报, 2025, 39(1): 23120118-5.
[5] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[6] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[7] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[8] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[9] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[10] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[11] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[12] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[15] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed