Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23120118-5    https://doi.org/10.11896/cldb.23120118
  无机非金属及其复合材料 |
超细等轴状AlN粉体的燃烧合成制备及机理研究
李明新, 魏智磊*, 张彪, 赵蕾, 史忠旗*
西安交通大学材料科学与工程学院金属材料强度国家重点实验室, 西安 710049
Combustion Synthesis of Ultrafine Equal-axis AlN Powder and the Underlying Occurrences
LI Mingxin, WEI Zhilei*, ZHANG Biao, ZHAO Lei, SHI Zhongqi*
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 14411KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超细等轴状AlN粉体因高烧结活性、良好的流动性和分散性,在电子封装、半导体等领域应用广泛,然而常规方法制备超细等轴状AlN粉体通常需要在高温下长时间保温,导致工艺成本较高,限制了其应用。本工作以Al粉和AlN粉为原料,采用高效低成本的燃烧合成工艺制备超细等轴状AlN粉体,系统研究了AlN稀释剂比例和N2压力对燃烧温度、产物物相组成和微观结构的影响。结果表明,AlN稀释剂比例的增加和N2压力的降低都会导致燃烧温度的降低,进而有利于通过Al粉的原位氮化获得超细等轴状AlN粉体。当AlN稀释剂添加量为60%(摩尔分数)、N2压力为0.2 MPa时,成功制备了平均粒径约为1.5 μm的超细等轴状AlN粉体。此外,基于燃烧淬熄实验分析了超细等轴状AlN粉体的原位氮化生长机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李明新
魏智磊
张彪
赵蕾
史忠旗
关键词:  燃烧合成  氮化铝  粉体  生长机制    
Abstract: Ultrafine equal-axis AlN powder has found wide application in the fields such as electronic packaging, semiconductor, etc. owing to its high sintering activity, and good fluidity and dispersibility. The preparation of equal-axis AlN powder through conventional methods nevertheless usually requires long soaking time at high temperatures, resulting in high cost and therefore limiting its application. The present work made a satisfying attempt to prepare ultrafine equal-axis AlN powder via a high-efficiency and low-cost combustion synthesis process using Al and AlN powders as raw materials, and systematically studied the effects of AlN diluent dosage and N2 pressure on the combustion temperature and the products' phase composition and microstructure. The results showed that both the increase in AlN diluent dosage and the decrease in N2 pressure led to the reduction of combustion temperature, which was conducive to the in-situ nitriding of Al powder to obtain ultrafine equal-axis AlN powder. By adopting an AlN dosage of 60mol% and a N2 pressure of 0.2 MPa, the equal-axis AlN powder with an average particle size of 1.5 μm was obtained. Furthermore, the underlying occurrences during the in-situ nitriding growth of equal-axis AlN powder were revealed by the gas-releasing assisted quenching experiments.
Key words:  combustion synthesis    aluminum nitride    powder    growth mechanism
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TB321  
基金资助: 陕西省自然科学基础研究计划项目(2023-JC-JQ-29)
通讯作者:  *魏智磊,西安交通大学材料科学与工程学院讲师,目前主要从事多孔陶瓷及其复合材料的应用基础研究工作。weizhilei@xjtu.edu.cn;史忠旗,西安交通大学材料科学与工程学院教授、博士研究生导师。目前主要从事结构/功能一体化陶瓷材料等方面的研究。zhongqishi@xjtu.edu.cn   
作者简介:  李明新,西安交通大学材料科学与工程学院硕士研究生,在史忠旗教授的指导下进行研究。目前主要研究领域为超细等轴状氮化铝粉体的燃烧合成制备及性能研究。
引用本文:    
李明新, 魏智磊, 张彪, 赵蕾, 史忠旗. 超细等轴状AlN粉体的燃烧合成制备及机理研究[J]. 材料导报, 2025, 39(1): 23120118-5.
LI Mingxin, WEI Zhilei, ZHANG Biao, ZHAO Lei, SHI Zhongqi. Combustion Synthesis of Ultrafine Equal-axis AlN Powder and the Underlying Occurrences. Materials Reports, 2025, 39(1): 23120118-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120118  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23120118
1 Chung S L, Lai C H. Key Engineering Materials, 2012, 521, 101.
2 Nersisyan H H, Lee J H, Kim H Y, et al. International Materials Reviews, 2020, 65(6), 323.
3 Lee E S, Lee S M, Shanefield D J, et al. Journal of the American Ceramic Society, 2008, 91(4), 1169.
4 Rutkowski P J, Kata D. Journal of Advanced Ceramics, 2013, 2(2), 180.
5 Tondare V N, Balasubramanian C, Shende S V, et al. Applied Physics Letters, 2002, 80(25), 4813.
6 Yin S, Tseng K J, Zhao J Y. Applied Thermal Engineering, 2013, 52(1), 120.
7 Fu R L, Chen K X, Xu X, et al. Materials Letters, 2005, 59(19-20), 2605.
8 Qiao L, Chen S W, Zheng J W, et al. Advanced Powder Technology, 2015, 26(3), 830.
9 Ohashi M, Kawakami S, Yokogawa Y, et al. Journal of the American Ceramic Society, 2005, 88(9), 2615.
10 Wang Q, Cui W, Ge Y Y, et al. Journal of the American Ceramic Society, 2014, 98(2), 392.
11 Wan J, Qiao X S, Wu L A, et al. Journal of Sol-Gel Science and Technology, 2015, 76(3), 658.
12 Zhang S G. Powder Metallurgy Technology, 2011, 29(6), 452(in Chinese).
张树格. 粉末冶金技术, 2011, 29(6), 452.
13 Yang B, Wang Q Y, Yang X, et al. Materials Reports, 2020, 34(S1), 128(in Chinese).
杨波, 王启扬, 杨肖, 等. 材料导报, 2020, 34(S1), 128.
14 Li Z N, La P Q, Meng Q, et al. Materials Reports, 2023, 37(19), 70(in Chinese).
李正宁, 喇培清, 孟倩, 等. 材料导报, 2023, 37(19), 70.
15 Li F, Cui W, Tian Z B, et al. Materials Reports, 2022, 36(10), 40(in Chinese).
李飞, 崔巍, 田兆波, 等. 材料导报, 2022, 36(10), 40.
16 Hobosyan M A, Khachatryan H L, Davidova A, et al. Chemical Engineering Journal, 2011, 170(1), 286.
17 Hsieh C Y, Lin C N, Chung S L, et al. Journal of the European Ceramic Society, 2007, 27(1), 343.
18 Jiang J G, Zhuang H R, Li W L, et al. Journal of Inorganic Materials, 1998, 13(4), 568(in Chinese).
江国建, 庄汉锐, 李文兰, 等. 无机材料学报, 1998, 13(4), 568.
19 Hiranaka A, Yi X, Saito G, et al. Ceramics International, 2017, 43(13), 9872.
20 Niu J, Suzuki S, Yi X, et al. Ceramics International, 2015, 41(3), 4438.
21 Shi Z Q, Miyamoto Y, Wang H L, et al. Nitride ceramics, combustion synthesis, properties and applications, John Wiley & Sons, USA, 2014, pp. 75.
22 Shin J, Ahn D, Shin M, et al. Journal of the American Ceramic Society, 2000, 83(5), 1021.
23 Shi Z Q, Radwan M, Kirihara S, et al. Journal of Alloys and Compounds, 2009, 476(1-2), 360.
24 Wang H B, Han J C, Li Z Q, et al. Journal of the European Ceramic Society, 2001, 21(12), 2193.
[1] 任金翠, 吴义胜, 李欣沂, 唐艳姿. 一维HfC、ZrC、TaC的制备与应用[J]. 材料导报, 2025, 39(2): 23100152-10.
[2] 张迎新, 杨康, 李日军, 高江帆, 杨永凤. 新型矿用灭火材料——凝胶干水粉体的制备及灭火实验研究[J]. 材料导报, 2024, 38(24): 23100151-10.
[3] 郝舒琪, 苏海军, 赵迪, 李翔, 董栋, 于佳俊. 粉体特性对光固化3D打印陶瓷浆料性质影响的研究进展[J]. 材料导报, 2024, 38(17): 23060075-10.
[4] 李雪伍, 周龙龙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 呼帅邦. 铌酸钾钠压电陶瓷制备工艺研究进展[J]. 材料导报, 2023, 37(11): 21070049-9.
[5] 安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
[6] 李飞, 崔巍, 田兆波, 张杰, 杜松墨, 陈张霖, 刘光华. 稀释剂种类对燃烧合成氮化硅粉体的影响[J]. 材料导报, 2022, 36(10): 21030087-4.
[7] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[8] 马殿普, 普友福, 陈高芳, 覃德清, 张家涛. 二氧化锡超细粉体制备方法综述[J]. 材料导报, 2021, 35(Z1): 151-155.
[9] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[10] 张智, 马幼平, 周子凌, 魏花丽, 赵丽娜. 空心球羟基磷灰石等离子喷涂粉体的制备[J]. 材料导报, 2021, 35(2): 2019-2025.
[11] 杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
[12] 李啸轩, 张强, 朱春城. 以g-C3N4为原料快速合成Ti2Al(C,N)陶瓷及其层状生长机制研究[J]. 材料导报, 2020, 34(4): 4032-4036.
[13] 方姚, 张勇, 冉真真. 中深层地热井固井导热水泥导热系数研究[J]. 材料导报, 2020, 34(20): 20028-20033.
[14] 刘朋, 王爱国, 刘开伟, 马瑞, 徐海燕, 孙道胜, 经验. 粒状煤矸石制备活性粉体材料的颜色转变及其量化表征[J]. 材料导报, 2020, 34(16): 16037-16042.
[15] 崔帅, 呼世磊, 吕东风, 崔燚, 魏颖娜, 魏恒勇, 卜景龙, 陈越军. 介孔氮化铌粉体的制备及电化学性能[J]. 材料导报, 2020, 34(14): 14009-14015.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed