Research Progress on the Effect of Powder Characteristics on the Properties of Ceramic Slurry Based Stereolithography 3D Printing
HAO Shuqi1, SU Haijun1,2,*, ZHAO Di1, LI Xiang1, DONG Dong1, YU Jiajun3
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, Guangdong, China 3 School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
Abstract: Ceramic materials are widely used because of their excellent mechanical properties and chemical stability. However, due to their high hardness and brittleness, there are challenges in the forming and processing of ceramic components. Traditional ceramic molding technologies have been unable to meet requirements of the production of complex precise ceramics. Recently, ceramic additive manufacturing technology has developed rapidly. Stereolithography 3D printing technology stands out with its unique advantages such as fast printing speed, high molding accuracy and smooth surface of green bodies. As the raw material of stereolithography, the properties of ceramic slurry affect the printing process and molding quality of ceramic products seriously. High quality stereolithography ceramic slurry has the characteristics of high solid content, low viscosity, and anti-settling. Due to the variety of components, many factors affect the properties of ceramic slurry. How to obtain the best formulation of ceramic slurry has always been a difficult problem. For this problem, based on a brief introduction to the theory of stereolithography 3D printing technology and the preparation principle of ceramic slurry, starting from the properties of ceramic powder, this paper focuses on the research progress of the effects of ceramic powder properties, particle size distribution and grading design on the rheology, stability and photopolymerization performance of the slurry. Finally, we summarize and prospect optimization methods of ceramic raw materials in the preparation of ceramic slurry based by stereolithography 3D printing. This paper is aiming to provide a reference for researchers to improve slurry properties by selecting and designing raw ceramic materials.
郝舒琪, 苏海军, 赵迪, 李翔, 董栋, 于佳俊. 粉体特性对光固化3D打印陶瓷浆料性质影响的研究进展[J]. 材料导报, 2024, 38(17): 23060075-10.
HAO Shuqi, SU Haijun, ZHAO Di, LI Xiang, DONG Dong, YU Jiajun. Research Progress on the Effect of Powder Characteristics on the Properties of Ceramic Slurry Based Stereolithography 3D Printing. Materials Reports, 2024, 38(17): 23060075-10.
1 Yang Y, Guo X T, Tang J, et al. Journal of Inorganic Materials, 2022, 37(3), 267 (in Chinese). 杨勇, 郭啸天, 唐杰, 等. 无机材料学报, 2022, 37(3), 267. 2 Li X J, Chen Y. Journal of Materials Engineering and Performance, 2021, 30(7), 4819. 3 Chen Z W, Li Z Y, Li J J, et al. Journal of the European Ceramic Society, 2019, 39(4), 661. 4 Chen Z, Li D, Zhou W, et al. Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 2009, 224(4), 641. 5 Halloran J W. Annual Review of Materials Research, 2016, 46, 19. 6 Bove A, Calignano F, Galati M, et al. Applied Sciences (Switzerland), 2022, 12, 3591. 7 Schmidleithner C, Kalaskar D M. In:3D Printing, Cvetković D, ed., IntechOpen, UK, 2018, pp. 11. 8 Bae C J, Halloran J W. Journal of the European Ceramic Society, 2019, 39(14), 4299. 9 Li Q L, Li J G, Liang J J, et al. Special-cast and Non-ferrous Alloys, 2021, 41(11), 1339 (in Chinese). 李乔磊, 李金国, 梁静静, 等. 特种铸造及有色合金, 2021, 41(11), 1339. 10 Hu C Q, Chen Y F, Yang T S, et al. Ceramics International, 2021, 47(9), 12442. 11 Zhou L M, Guo L C. Journal of the Chinese Ceramic Society, 2003, 31(11), 1075 (in Chinese). 周丽敏, 郭露村. 硅酸盐学报, 2003, 31(11), 1075. 12 Tropea C, Yarin A L, Foss J F. Springer handbook of experimental fluid mechanics, Springer-Verlag Berlin Heidelberg, Germany, 2007, pp. 689. 13 Bao W B, Zhang J H. Chemical Enterprise Management, 2021(19), 168 (in Chinese). 包文勃, 张吉华. 化工管理, 2021(19), 168. 14 Olhero S M, Ferreira J M F. Powder Technology, 2004, 139(1), 69. 15 Greenwood R, Luckham P F, Gregory T. Journal of Colloid and Interface Science, 1997, 191, 11. 16 Hu Y. Preparation and properties of alumina ceramics and alumina/epoxy composites. Master's Thesis, Nanchang University, China, 2016 (in Chinese). 胡永. 氧化铝陶瓷及氧化铝/环氧树脂复合材料的制备与性能研究. 硕士学位论文, 南昌大学, 2016. 17 Jang J H, Wang S, Pilgrim S M, et al. Journal of the American Ceramic Society, 2004, 83(7), 1804. 18 Licciulli A, Esposito Corcione C, Greco A, et al. Journal of the European Ceramic Society, 2005, 25(9), 1581. 19 Zhang K Q, Xie C, Wang G, et al. Ceramics International, 2019, 45(1), 203. 20 Li K, Zhao Z. Ceramics International, 2017, 43(6), 4761. 21 Zhang S, Sha N, Zhao Z. Journal of the European Ceramic Society, 2017, 37(4), 1607. 22 Li X, Zhong H, Zhang J, et al. International Journal of Applied Ceramic Technology, 2019, 17(1), 239. 23 Hinczewski C, Corbel S, Chartier T. Journal of the European Ceramic Society, 1998, 18(6), 583. 24 Camargo I L de, Morais M M, Fortulan C A, et al. Ceramics International, 2021, 47(9), 11906. 25 Krieger I M, Dougherty T J. Transactions of the Society of Rheology, 1959, 3, 137. 26 Barnes H A, Hutton J F, Walters K. An introduction to rheology, Elsevier Science Publishers B. V., Netherlands, 1989, pp. 120. 27 Lewis J A. Journal of the American Ceramic Society, 2004, 83(10), 2341. 28 Bray D J, Gilmour S G, Guild F J, et al. Composites Part A:Applied Science and Manufacturing, 2013, 54, 37. 29 Bergström L. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1998, 133(1-2), 151. 30 Zhang X Y, Du H Y, Gong X X, et al. Ceramics International, 2014, 40(4), 5473. 31 Li X B, Zhong H, Zhang J X, et al. Journal of Inorganic Materials, 2019, 35(2), 231. 32 Xing H Y, Zou B, Liu X Y, et al. Powder Technology, 2020, 359, 314. 33 Qian C C, Hu K H, Wang H Y, et al. Ceramics International, 2022, 48(15), 21600. 34 Li W L, Zhou H Z, Liu W W, et al. Journal of Materials Engineering, 2022, 50(7), 40 (in Chinese). 李文利, 周宏志, 刘卫卫, 等. 材料工程, 2022, 50(7), 40. 35 Gao F, Yang S F, Hao P W, et al. Journal of the American Ceramic Society, 2011, 94(3), 704. 36 Chen X G. Chinese Polymer Bulletin, 2009, 126(10), 64 (in Chinese). 陈学刚. 高分子通报, 2009, 126(10), 64. 37 Zhu X H. Research on UV-curing fixed abrasive lapping plate and its processing performance. Master's Thesis, Zhejiang University of Technology, China, 2010 (in Chinese). 朱贤辉. 光固化固结磨料研磨盘及其加工性能研究. 硕士学位论文, 浙江工业大学, 2010. 38 Tang J, Yang Y, Huang Z R. Materials Reports, 2021, 35(Z1), 172 (in Chinese). 唐杰, 杨勇, 黄政仁. 材料导报, 2021, 35(Z1), 172. 39 Dong D, Su H J, Li X, et al. Materials Reports, 2023, 37(18), 66 (in Chinese). 董栋, 苏海军, 李翔, 等. 材料导报, 2023, 37(18), 66. 40 Griffith M L, Halloran J W. Journal of Applied Physics, 1997, 81(6), 2538. 41 Zakeri S, Vippola M, Levänen E. Additive Manufacturing, 2020, 35, 101177. 42 Griffith M L, Halloran J W. Journal of the American Ceramic Society, 1996, 79(10), 2601. 43 Alazzawi M K, Kondapalli S S, Haber R A. Journal of Materials Research, 2021, 36(21), 4275. 44 Chartier T, Chaput C, Doreau F, et al. Journal of Materials Science, 2002, 37(15), 3141. 45 Qian C C, Hu K H, Li J H, et al. Journal of the European Ceramic Society, 2021, 41, 7141.