Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23080008-6    https://doi.org/10.11896/cldb.23080008
  新型高性能磷酸镁胶凝材料 |
葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响
杨一哲1, 林旭健1,2,*, 许晓莹2, 林恒舟3, 陈韦羽4, 叶财发5
1 福州大学先进制造学院,福建 晋江 362200
2 福州大学土木工程学院,福州 350108
3 福建筑兆建设有限公司,福建 厦门 361000
4 福建永旺建工集团有限公司,福建 龙岩 364000
5 福建同得建工集团有限公司,福建 厦门 361000
Effect of Sodium Gluconate on the Basic Properties of Magnesium Silicate Potassium Phosphate Cement
YANG Yizhe1, LIN Xujian1,2,*, XU Xiaoying2, LIN Hengzhou3, CHEN Weiyu4, YE Caifa5
1 Advanced Manufacturing College of Fuzhou University, Jinjiang 362200, Fujian, China
2 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
3 Fujian Zhuzhao Construction Co., Ltd., Xiamen 361000, Fujian, China
4 Fujian Yongwang Construction Engineering Group Co., Ltd., Longyan 364000, Fujian, China
5 Fujian Tongde Construction Engineering Group Co., Ltd., Xiamen 361000, Fujian, China
下载:  全 文 ( PDF ) ( 12155KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅磷酸钾镁水泥(MSPPC)是一种新型高性能磷酸镁水泥,与使用酸性磷酸二氢钾制成的普通磷酸钾镁水泥(MKPC)不同,其必要原材料包括碱性磷酸氢二钾、氧化镁和硅灰。MKPC不掺缓凝剂难以制备,而MSPPC由于凝结时间较长,无需使用缓凝剂即可制备,硬化后具有比MKPC更优异的力学性能,但其工作性能尚未能很好满足实际工程应用需求,可通过缓凝剂用量来调节凝结时间和流动性。硼砂是磷酸镁水泥常用的缓凝剂,但其具有潜在的毒性迫使人们需要寻找一种安全有效的替代品。本工作研究了葡萄糖酸钠(SG)掺量对MSPPC工作性能、抗压强度、水化温度、pH值、物相组成、孔隙率和微观形貌的影响,并建立了缓凝机理模型。结果表明,SG掺量越高,缓凝效果越显著,当SG掺量为6%时,初凝时间由12 min延长至30 min;净浆流动度由84 mm提升至142 mm;大于0.1 μm的孔占比减少,有效改善了孔径分布;水化产物的种类未发生改变,但3 d的抗压强度由64.3 MPa下降到53.9 MPa,下降了16.2%,而56 d的抗压强度下降了6.99%,不利影响减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨一哲
林旭健
许晓莹
林恒舟
陈韦羽
叶财发
关键词:  硅磷酸钾镁水泥  葡萄糖酸钠  凝结时间  物相组成  孔隙率    
Abstract: Magnesium silicon potassium phosphate cement (MSPPC) is an innovative high-performance magnesium phosphate cement, which is different from ordinary magnesium potassium phosphate cement (MKPC) using acidic potassium dihydrogen phosphate. Its necessary raw materials include basic dipotassium hydrogen phosphate, magnesium oxide and silica fume. MKPC is difficult to prepare without retarder, while MSPPC can be prepared without retarder due to its long setting time. After hardening, MSPPC has better mechanical properties than MKPC, but its working performance has not been able to meet the needs of practical engineering applications. The setting time and fluidity can be adjusted by the amount of retarder. Borax is a commonly used retarder for magnesium phosphate cement, but its potential toxicity problems forces the need to find a safe and effective alternative. This study investigated the influence of sodium gluconate (SG) content on the performance, compressive strength, hydration temperature, pH value, phase composition, porosity, and microstructure of MSPPC, and established a model for the retarding mechanism. The results demonstrated that a higher SG content led to a more pronounced retarding effect. At the SG dosage was 6%, the initial setting time was extended from 12 min to 30 min, and the cement paste fluidity improved from 84 mm to 142 mm. The proportion of pores larger than 0.1 μm was reduced, effectively improving pore size distribution. Although the type of hydration products did not change, there was an adverse effect on the 3 d compressive strength, from 64.3 MPa to 53.9 MPa, a decreased by 16.2%, while the 56 d compressive strength decreased by 6.99% and the adverse effect was reduced.
Key words:  magnesium silicon potassium phosphate cement    sodium gluconate    setting time    phase composition    porosity
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(52279126);福建省住房和城乡建设行业科技研究开发项目(2022-K-180)
通讯作者:  *林旭健,福州大学土木工程学院教授、博士研究生导师。分别于1990年7月、1993年1月获得福州大学工学学士学位和硕士学位,1999年6月获得浙江大学工学博士学位。主要从事混凝土结构与环保水泥基材料研究。xjlin@163.com   
作者简介:  杨一哲,2017年6毕业于河南理工大学土木工程学院获得工学学士学位。现为福州大学先进制造学院硕士研究生,在林旭健教授的指导下进行研究。目前主要研究领域为环保水泥基材料。
引用本文:    
杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
YANG Yizhe, LIN Xujian, XU Xiaoying, LIN Hengzhou, CHEN Weiyu, YE Caifa. Effect of Sodium Gluconate on the Basic Properties of Magnesium Silicate Potassium Phosphate Cement. Materials Reports, 2024, 38(17): 23080008-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080008  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23080008
1 Chang Y, Shi C, Yang N, et al. Journal of the Chinese Silicate Society, 2013, 41(4), 492.
2 Li J, Zhang W, Cao Y. Construction and Building Materials, 2014, 58, 122.
3 Qian J, You C, Wang Q, et al. Construction and Building Materials, 2014, 68, 307.
4 Park J W, Kim K H, Ann K Y. Advances in Materials Science and Engineering, 2016, 2016, 7179403.
5 Li G, Zhang J, Zhang G. Construction and Building Materials, 2017, 136, 99.
6 You C, Qian J, Qin J, et al. Cement and Concrete Research, 2015, 78, 179.
7 Gao S, Guo X, Ban S, et al. Construction and Building Materials, 2023, 363, 129736.
8 Wagh A S, Singh D, Jeong S Y. Handbook of Mixed Management Technology, 2001, 25(6), 1.
9 Xie Y D, Lin X J, Pan X X, et al. Construction and Building Materials, 2020, 235, 117471.
10 Xu X, Lin X, Pan X, et al. Construction and Building Materials, 2020, 235, 117544.
11 Walling S A, Provis J L. Chemical Reviews, 2016, 116(7), 4170.
12 Yang Y, Fang B, Zhang G, et al. Materials, 2022, 15(3), 943.
13 Yu X, Yu C, Ran Q P, et al. Journal of the Chinese Ceramic Society, 2018, 46(2), 181 (in Chinese).
余鑫, 于诚, 冉千平, 等. 硅酸盐学报, 2018, 46(2), 181.
14 Li J, Ji Y S, Huang G D, et al. Rsc Advances, 2017, 7(74), 46852.
15 Tan H B, Wang J, Ma B G, et al. Journal of Journal of Wuhan University of Technology, 2014, 36(5), 6 (in Chinese).
谭洪波, 汪杰, 马保国, 等. 武汉理工大学学报, 2014, 36 (5), 6.
16 Qian C X, Yang J M. Journal of Materials in Civil Engineering, 2011, 23(10), 1405.
17 Qiao F, Chau C K, Li Z. Construction and Building Materials, 2010, 24(5), 695.
18 Li Y, Shi T, Chen B. Journal of Materials in Civil Engineering, 2016, 28(4), 04015170.
19 Tan H, Zhang X, Guo Y, et al. Construction and Building Materials, 2018, 165, 887.
20 Ma H, Xu B, Li Z. Cement and Concrete Research, 2014, 65, 96.
21 Ma H, Xu B, Liu J, et al. Materials & Design, 2014, 64, 497.
22 Li Y, Li Z, Pei H, et al. Construction and Building Materials, 2016, 102, 233.
[1] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[2] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[3] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[4] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[5] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[6] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[7] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[8] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[9] 聂光临, 刘一军, 汪庆刚, 黄玲艳, 吴洋, 潘利敏, 包亦望, 饶平根. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 22040120-9.
[10] 王浩臻, 周新远, 刘明, 贾磊, 黄艳斐, 王海斗. 封孔剂降低热喷涂涂层孔隙率的研究进展[J]. 材料导报, 2023, 37(20): 22030068-19.
[11] 张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
[12] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[13] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[14] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[15] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed