Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21100165-6    https://doi.org/10.11896/cldb.21100165
  无机非金属及其复合材料 |
三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究
刘晓1,*, 谢辉1, 罗奇峰1, 王子明1, 崔素萍1, 郭金波2, 张冠华2
1 北京工业大学材料与制造学部,新型功能材料教育部重点实验室,北京 100124
2 辽宁省交通规划设计院有限责任公司,沈阳 110111
Study on Regulation Mechanism of Triethanolamine to Liquid Alkali-free Accelerator on ‘Accelerating-Inhibiting' of Early Hydration of Cement
LIU Xiao1,*, XIE Hui1, LUO Qifeng1, WANG Ziming1, CUI Suping1, GUO Jinbo2, ZHANG Guanhua2
1 Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 Liaoning Provincial Transportation Planning and Design Institute Co., Ltd., Shengyang 110111, China
下载:  全 文 ( PDF ) ( 3167KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三乙醇胺(TEA)作为水泥混凝土中常用的早强组分,对早期强度发展有显著的促进作用。近年来随着喷射混凝土和液体无碱速凝剂的快速发展,三乙醇胺以其优良的早强特性逐渐得到广泛应用。然而,不同条件下由三乙醇胺制备的速凝剂性能不尽相同,甚至截然相反,其对水泥早期水化的影响规律及作用机理亟待明确。本工作制备了不同TEA比例的液体无碱速凝剂,从凝结时间、早期强度、水化放热行为、水化物相、热分析等方面详细研究了液体无碱速凝剂中TEA对水泥早期水化的影响规律。结果表明,当TEA占液体无碱速凝剂质量的0.25%时,凝结时间最短,初凝109 s,终凝324 s,1 d强度最高,达到12.32 MPa,满足喷射混凝土用速凝剂的国标要求。TEA在低掺量时能够加速液体无碱速凝剂对水泥早期水化的促进作用,而TEA在高掺量下会对水泥早期水化有明显的削弱和抑制。此外,通过电导率、核磁氢谱等手段研究了TEA与铝相的络合机制,揭示了TEA对液体无碱速凝剂“促-抑”水泥早期水化的调控机理:(1)低TEA掺量时,TEA络合偏铝酸根离子,参与加速C3A的早期水化;(2)高TEA掺量时,会生成大量钙矾石和TEA-Ca络合物,覆盖在C3A表面抑制水化。本工作系统探究了不同TEA掺量的液体无碱速凝剂对水泥早期水化的影响规律和调控机理,为开发高性能液体无碱速凝剂提供了重要的研究基础和科学指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓
谢辉
罗奇峰
王子明
崔素萍
郭金波
张冠华
关键词:  速凝剂  三乙醇胺  凝结时间  早期强度  水化    
Abstract: Triethanolamine (TEA), as a commonused component in cement concrete for early strength, which can significantly promote the development of early strength. In recent years, with the rapid development of shotcrete and liquid alkali-free accelerator, triethanolamine has been widely used due to its excellent early-strength characteristics. However, the performance of accelerator prepared from triethanolamine under different conditions are not the same or even the opposite. Its influence law and action mechanism on early hydration of cement need to be clarified. In this study, liquid alkali-free accelerator with different proportions of TEA was prepared. The influence of TEA in the alkali-free accelerator on the early hydration of cement was investigated in detail from the aspects of setting time, early strength, hydration exothermic behavior, hydrate phase and thermal analysis. The results show that when TEA accounted for 0.25% of the mass of alkali-free accelerator, the setting time was the shortest, the initial setting was 109 s, the final setting was 324 s, and the strength was the highest at 1 d, reaching 12.32 MPa, which meets the national standard requirements of accelerator for shotcrete. TEA can accelerate the accelerating effect of alkali-free accelerator on early hydration of cement at low dosage, while it can significantly weaken and inhibit early hydration of cement at high dosage. In addition, the complexation mec-hanism between TEA and aluminum phase was studied by means of conductivity and nuclear magnetic hydrogen spectroscopy, and the regulation mechanism of TEA to liquid alkali-free accelerators on the ‘accelerating-inhibiting' early hydration of cement was revealed:(ⅰ) when the content of TEA is low, metaaluminate ions complex with TEA and participate in accelerating the early hydration of C3A;(ⅱ) high TEA content will produce a large amount of ettringite and TEA-Ca complex, which will cover the surface of C3A and inhibit hydration. This study systematically explores the influence and regulation mechanism of liquid alkali-free accelerator with different TEA contents on early hydration of cement, which provides an important research basis and scientific guidance for the development of high-performance liquid alkali-free accelerator.
Key words:  accelerator    triethanolamine    setting time    early strength    hydration
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TU528.53  
基金资助: 河北自然科学基金(E2022210028);国家自然科学基金(51578025)
通讯作者:  *刘晓,北京工业大学材料与制造学部教授、博士研究生导师,北京市属高校青年拔尖人才。2009年获得北京化工大学材料科学与工程专业博士学位。主要研究方向为混凝土外加剂、高性能混凝土的制备与应用等。发表论文100余篇,授权美国发明专利4项、中国发明专利39项。liux@bjut.edu.cn   
引用本文:    
刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
LIU Xiao, XIE Hui, LUO Qifeng, WANG Ziming, CUI Suping, GUO Jinbo, ZHANG Guanhua. Study on Regulation Mechanism of Triethanolamine to Liquid Alkali-free Accelerator on ‘Accelerating-Inhibiting' of Early Hydration of Cement. Materials Reports, 2023, 37(9): 21100165-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100165  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21100165
1 Peter H,Martin L. Le's chemistry of cement and concrete,Butter worth-Heinemann,London,2005,pp. 1053.
2 Kong X M,Lu Z B,Liu H,et al. Cement and Concrete Research,2013,65,1101.
3 Liu J Q. Research on the synergestic effect of polycarboxylate superplasticizer and hardening accelerants. Master's Thesis,Beijing University of Technology,China,2008(in Chinese).
刘进强.聚羧酸系减水剂与早强组分的复合性能研究. 硕士学位论文,北京工业大学,2008.
4 Ramachandran V S. Aool Chem Biotech,1972,22(11),1125.
5 Ramachandran V S. Cement and Concrete Research,1973,3(1),41.
6 Ramachandran V S. Cement and Concrete Research,1976,6(5),623.
7 Huang Moting. Research on preparation and propreties of a new alkali-free flash setting admixture. Master's Thesis,Harbin Institute of Technology,China,2020(in Chinese).
黄莫霆. 新型无碱速凝剂的制备与性能研究. 硕士学位论文,哈尔滨工业大学,2020.
8 Gan Jiezhong. Research on the composition,properties and mechanism of chloride-free and alkali-free liquid accelerator. Master's Thesis,China Building Materials Academy,China,2014(in Chinese).
甘杰忠. 无碱无氯液体速凝剂的组成、性能及机理研究. 硕士学位论文,中国建筑材料科学研究总院,2014.
9 Zhang Yanrong,Kong Xiangming,Lu Zichen,et al. Cement and Concrete Research,2016,87,64.
10 Yohannes L Y,Yu Z C,Raymond H W L,et al. Construction and Building Materials,2017,141,94.
11 Han Jianguo,Wang Kejin,Shi Jiyao,et al. Construction and Building Materials,2015,93,457.
12 Ding Xiangqun,Li Xin,Guo Yizhe,et al. Concrete,2021(5),56(in Chinese).
丁向群,李欣,郭一哲,等. 混凝土,2021(5),56.
13 Jiang Min. Study on the preparation and performance of new type alkali-free and chlorine-free liquid accelerator. Master's Thesis,Hunan Normal University,China,2016(in Chinese).
蒋敏. 新型无氯液体无碱速凝剂的制备及其性能研究. 硕士学位论文,湖南师范大学,2016.
14 Perez J P,Nonat A,Pourchet S,et al. In:Seventh CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete. American Concrete Institute,Farmington Hills,2003,pp. 583.
15 Hu Shijun,Hu Dashi,Xiao Lihua. Journal of Daqing Petroleum Institute,1992(2),28(in Chinese).
胡世军,胡大石,肖丽华. 大庆石油学院学报,1992(2),28.
16 Lu Zichen,Kong Xiangming,Jansen Daniel,et al. Cement and Concrete Research,2020,132,106041.
17 He Tingshu,Li Hongyan,He Rui,et al. Bulletin of the Chinese Ceramic Society,2019,9(9),2707(in Chinese).
何廷树,李红艳,何蕊,等. 硅酸盐通报,2019,9(9),2707.
18 Tian Junzhuang. Preparation and performance research of high strength liquid alkali-free flash setting admixture. Master's Thesis,Chang'an University,China,2017(in Chinese).
田俊壮. 增强型液体无碱速凝剂的制备及性能研究. 硕士学位论文,长安大学,2017.
19 Yaphary Y L,Yu Z C,Lam R H W,et al. Construction and Building Materials,2017,141,94.
20 Yang Fumin. Railway Engineering,2021,61(2),139 (in Chinese).
杨富民. 铁道建筑,2021,61(2),139.
21 Yang Jin,Yang Mingjian,He Xingyang,et al. Construction and Building Materials,2021,306,124840.
22 Niu D T,Jiang L,Fei Q N. Journal of Wuhan University of Technology-Materials Science Edition,2013,28(6),1172.
23 Wang Jiahe,Xie Yongjiang,Zhong Xinhua,et al. Cement and Concrete Composites,2020,112,103684.
24 Lin Zongshou,Zhao Xiujian,Ye Jing,et al. Inorganic non-metallic materials engineering,Wuhan University of Technology Press,China,2013,pp. 218 (in Chinese).
林宗寿,赵修建,叶菁,等. 无机非金属材料工学,武汉理工大学出版社,2013,pp. 218.
25 Li Guoxin,Zhang Jiangbo,Niu Mengdie,et al. Construction and Building Materials,2020,233,117296.
[1] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[2] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
[5] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[6] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[7] 宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
[8] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[9] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[10] 刘猛, 王庆, 朱晨, 顿鹏, 刘勇. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(Z1): 22020111-5.
[11] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[12] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[13] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[14] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[15] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed