Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21050113-9    https://doi.org/10.11896/cldb.21050113
  无机非金属及其复合材料 |
基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性
宫经伟1,2,*, 谢刚川1,2, 秦灿1,2, 晋强1
1 新疆农业大学水利与土木工程学院,乌鲁木齐 830052
2 新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052
Early Hydration Characteristics of Low-heat Portland Cement Based on Resistivity and ζ-potential Method
GONG Jingwei1,2,*, XIE Gangchuan1,2, QIN Can1,2, JIN Qiang1
1 College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
2 Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
下载:  全 文 ( PDF ) ( 21315KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究低热硅酸盐水泥早期水化特性,采用电阻率测试仪和电声法ζ-电位分析仪分别对低热水泥和普通硅酸盐水泥水化的电阻率和ζ-电位进行测试。结果表明:电阻率和ζ-电位曲线在表征水泥浆体阶段的水化过程上具有较好的一致性。在水化20 min内,低热水泥浆体的ζ-电位与Ca2+浓度成正比,ζ-电位的急剧上升与{Ca6[Al(OH)6]2·24H2O}6+浓度有关;水化20 min后,浆体中开始形成AFt和CSH,ζ-电位的变化受SO42-与{Ca6[Al(OH)6]2·24H2O}6+、Ca2+与HSiO3-反应速率控制。与普通水泥相比,低热水泥在水化20 min内Ca2+溶出速率更快,浆体中AFt形成时间更早;其诱导期持续时间短,主要受Ca(OH)2晶体成核生长速率及渗透压作用控制;在减速期,低热水泥水化的电阻率时间对数曲线的斜率Km值略小,说明低热水泥石在加速期水化速率加快,水化产物填充孔隙,这导致在减速期孔隙间距缩短速率加快,结构密实速率略慢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宫经伟
谢刚川
秦灿
晋强
关键词:  电阻率  ζ-电位  低热水泥  水化特性    
Abstract: In this study, the electrical resistivity tester and electro-acoustic ζ-potential analyzer were used to test the resistivity and ζ-potential of low-heat Portland cement pastes and ordinary Portland cement pastes, respectively, so as to explore the early hydration characteristics of low-heat Portland cement. The results demonstrate that the resistivity and ζ-potential curves have good consistency in characterizing the hydration process of the cement pastes; within 20 min of hydration, the ζ-potential of the low-heat Portland cement pastes is directly proportional to the Ca2+ concentrations; the sharply rise of ζ-potential is related to {Ca6[Al(OH)6]2·24H2O}6+ concentrations; after 20 min of hydration, ettringite (AFt) and calcium silicate hydrates (CSH) begin to form in the low-heat Portland cement pastes. Besides, the change of ζ-potential is influenced by not only the reaction rate of SO42- and {Ca6[Al(OH)6]2·24H2O}6+ but also the reaction rate of Ca2+ and HSiO3-. Compared with ordinary Portland cement, the low-heat Portland cement has a faster Ca2+ dissolution rate within 20 min of hydration, and the time of AFt formation is earlier in the low-heat Portland cement pastes; however, the induction period, which is mainly affected by the nucleation and growth rate of Ca(OH)2 crystals and osmotic pressure control, is shorter. During the deceleration period, the curve's slope Km of resistivity correlating with the logarithmic of time for low-heat Portland cement pastes is slightly smaller, indicating that the hydration rate of the low-heat Portland cement stone increases during the acceleration period, and hydrates filled the pores, which resulted in that the rate of shortening is faster for the pore spacing, and the rate of structural compaction is slightly slower during the deceleration period.
Key words:  electrical resistivity    ζ-potential    low-heat Portland cement    hydration characteristic
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TV421  
基金资助: 国家自然科学基金(51869031;51641906);新疆维吾尔自治区高校科研计划(XJEDU2020Y020);新疆维吾尔自治区天山青年计划(2020Q017)
通讯作者:  * 宫经伟,新疆农业大学教授、博士研究生导师。2013年6月毕业于武汉大学水利水电工程施工与管理专业,获博士学位。2013年9月进入新疆农业大学任教至今。主要研究方向:先进水泥基材料、寒冷干旱区水工混凝土材料耐久性能、全固废材料固化硫酸盐渍土。主持国家自然科学基金项目3项、新疆维吾尔自治区自然科学基金项目2项,发表学术论文40余篇(其中,SCI、EI收录7篇),撰写专著一部。gongjingwei034@163.com   
引用本文:    
宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
GONG Jingwei, XIE Gangchuan, QIN Can, JIN Qiang. Early Hydration Characteristics of Low-heat Portland Cement Based on Resistivity and ζ-potential Method. Materials Reports, 2023, 37(4): 21050113-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050113  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21050113
1 Wang X B, Wen Z J. Cement, 2014, 41(11), 22 (in Chinese).
王显斌, 文寨军. 水泥, 2014, 41(11), 22.
2 Sui T B, Wen Z J. China Building Materials, 2003(9), 60 (in Chinese).
隋同波, 文寨军. 中国建材, 2003(9), 60.
3 Zhang L J, He Z, Liang W Q, et al. Concrete, 2004(3), 32 (in Chinese).
张丽君, 何真, 梁文泉, 等. 混凝土, 2004(3), 32.
4 Yang Z Q, Lou Z H, Hu G J, et al. Journal of Shandong Mining Institute, 1996, 15(2), 158 (in Chinese).
杨志强, 楼宗汉, 胡国君, 等. 山东矿业学院学报, 1996, 15(2), 158.
5 Jiang C M, Gong J W, Wang F, et al. Concrete, 2019(2), 81 (in Chinese).
姜春萌, 宫经伟, 王菲, 等. 混凝土, 2019(2), 81.
6 Tang S W, Li Z J, Shao H Y, et al. Construction and Building Materials, 2014, 68, 492.
7 Mendes Sandro E S, Oliveira Rafael L N, Cremonez C, et al. Construction and Building Materials, 2018, 192, 613.
8 Wei X S, Xiao L Z, Li Z J. Journal of Wuhan University of Technology, 2008, 23(5), 762.
9 Zhang J, Qin L, Li Z J. Materials and Structures, 2009, 42(1), 18.
10 Dong B Q, Ma H Y. Concrete, 2008(5), 23 (in Chinese).
董必钦, 马红岩. 混凝土, 2008(5), 23.
11 Zeng X H, Sui T B, Li Z J. Journal of the Chinese Ceramic Society, 2009, 37(4), 602 (in Chinese).
曾晓辉, 隋同波, 李宗津. 硅酸盐学报, 2009, 37(4), 602.
12 Wei X S. Using resistivity to characterize the formation dynamics and performance of cement concrete structures, Wuhan University of Technology Press, China, 2016 (in Chinese).
魏小胜. 用电阻率表征水泥混凝土结构形成动力学及性能, 武汉理工大学出版社, 2016.
13 Wei X S, Xiao L Z, Li Z J. Construction and Building Materials, 2012, 31, 342.
14 Wei X S, Xiao L Z, Li Z J. Journal of the Chinese Ceramic Society, 2004, 32(1), 35 (in Chinese).
魏小胜, 肖莲珍, 李宗津. 硅酸盐学报, 2004, 32(1), 35.
15 Wei X, Li Z. Materials and Structures, 2005, 38(277), 413.
16 Sui T B, Zeng X H, Xie Y J, et al. Journal of the Chinese Ceramic Society, 2008, 36(4), 432 (in Chinese).
隋同波, 曾晓辉, 谢友均, 等. 硅酸盐学报, 2008, 36(4), 432.
17 Xiao L Z, Li Z J. Journal of Materials in Civil Engineering, 2009, 21(8), 370.
18 Zhang C, Wang Z, Wang L L, et al. Bulletin of the Chinese Ceramic Society, 2013, 32(7), 1264 (in Chinese).
张翠, 王智, 王林龙, 等. 硅酸盐通报, 2013, 32(7), 1264.
19 Nagele E. Cement and Concrete Research, 1985, 15(3), 458.
20 Pointeau I, Reiller P, Mace N, et al. Journal of Colloid and Interface Science, 2006, 300(1), 33.
21 Suzuki K, Nichikawa T, Kato K, et al. Cement and Concrete Research, 1981, 11(5-6), 760.
22 Tan D L. Journal of Wuhan University of Technology, 1988(4), 28 (in Chinese).
谭大璐. 武汉理工大学学报, 1988(4), 28.
23 Wang X, Hou P, Yu J, et al. Construction and Building Materials, 2020, 250, 1.
24 Wen Y, Zhou W L, Liu J P. In: The 9th National Conference on Cement and Concrete Chemistry and Application Technology. Guangzhou, 2005, pp. 321 (in Chinese).
温勇, 周伟玲, 刘加平. 第九届全国水泥和混凝土化学及应用技术会议. 广州, 2005, pp. 321.
25 Zhang C W, Ge Z, Yang K R, et al. Journal of the Chinese Ceramic Society, 2005(8), 926 (in Chinese).
张彩文, 葛志, 杨克锐, 等. 硅酸盐学报, 2005(8), 926.
26 Nagele E. Cement and Concrete Research, 1986, 16(6), 857.
27 Nagele E W. Chemical Engineering Science, 1989, 44(8), 1640.
28 Qian R S, Zhang Y S, Zhang Y, et al. Materials Reports B:Reaserch Papers, 2018, 32(6), 2066 (in Chinese).
钱如胜, 张云升, 张宇, 等. 材料导报:研究篇, 2018, 32(6), 2066.
29 Li X, Yan P Y. Journal of Building Materials, 2010, 13(6), 787 (in Chinese).
李响, 阎培渝. 建筑材料学报, 2010, 13(6), 787.
30 Dan J M, Wang P M. Journal of Shihezi University(Natural Science), 2009, 27(1), 77 (in Chinese).
但建明, 王培铭. 石河子大学学报(自然科学版), 2009, 27(1), 77.
31 Dan J M, Wang P M. Journal of Shihezi University(Natural Science), 2007(4), 494(in Chinese).
但建明, 王培铭. 石河子大学学报(自然科学版), 2007(4), 494.
32 Lyu L N, He Y J, Wang X, et al. Henan Building Materials, 2004(3), 3 (in Chinese).
吕林女, 何永佳, 王晓, 等. 河南建材, 2004(3), 3.
33 Atkins M, Bennett D G, Dawes A C, et al. Cement and Concrete Research, 1992, 92(22), 497.
34 Kulik D A, Wagner T, Dmytrieva S V, et al. Computational Geosciences, 2013, 17, 1.
35 Li H M. Sub-zero temperature performance and thermodynamic modelling of hydration of sulphoaluminate cement with antifreezing agent. Master's Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
李华明. 防冻剂作用下硫铝酸盐水泥负温性能及其水化热力学模拟. 硕士学位论文, 哈尔滨工业大学, 2020.
36 Feng P. Microstructure modeling of cementitious material subjected to external sulfate attack. Ph. D. Thesis, Southeast University, China, 2015 (in Chinese).
冯攀. 硫酸盐侵蚀下水泥基材料微结构模拟及损伤演变. 博士学位论文, 东南大学, 2015.
37 Peng J H, Lou Z H. Journal of the Chinese Ceramic Society, 2000, 28(6), 513 (in Chinese).
彭家惠, 楼宗汉. 硅酸盐学报, 2000, 28(6), 513.
38 Zhou Z K, Gu T R, Ma J M, et al. Colloid chemistry, Peking University Press, China, 1984(in Chinese).
周祖康, 顾惕人, 马季铭, 等. 胶体化学基础, 北京大学出版社, 1984.
39 Cecilie E, Staffan H. Cement and Concrete Research, 2004, 35(12), 2313.
40 Xu G L, Sun Y, Lin J H. Materials Reports B:Reaserch Papers, 2013, 27(6), 126 (in Chinese).
徐冠立, 孙遥, 林金辉. 材料导报:研究篇, 2013, 27(6), 126.
41 Elakneswaran Y, Nawa T, Kurnmisawa K. Cement and Concrete Composites, 2009, 31(1), 72.
42 Hu X, Shi C J, Geert D S. In: the 14th International Congress on the Chemistry of Cement (ICCC 2015), Beijing, 2015, pp. 168.
43 Zhang Y S, Liu C, Liu Z Y, et al. Construction and Building Materials, 2017, 155, 965.
44 Lowke D, Gehlen C. Cement and Concrete Research, 2017, 95, 196.
45 Lyu P, Zhai J P, Lie R, et al. Journal of the Chinese Ceramic Society, 2004(4), 530 (in Chinese).
吕鹏, 翟建平, 聂荣, 等. 硅酸盐学报, 2004(4), 530.
46 Xiao L Z, Li Z J. Cement and Concrete Research, 2007, 38(3), 316.
[1] 池铭浩, 翁卫祥, 李强. 氧气流量及烧结保温时间对ITO靶材的相含量与电阻率的影响[J]. 材料导报, 2022, 36(5): 20120167-5.
[2] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[3] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[4] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[5] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[6] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[7] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[8] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[9] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. 原子层沉积氮化钽薄膜的研究进展[J]. 材料导报, 2020, 34(19): 19101-19110.
[10] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[11] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[12] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[13] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[14] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[15] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed