Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21090259-16    https://doi.org/10.11896/cldb.21090259
  无机非金属及其复合材料 |
C-S-H纳米晶种及其对水泥水化硬化的促进作用综述
唐芮枫1, 张佳乐1, 王子明1,*, 崔素萍1, 王肇嘉1,2, 兰明章1
1 北京工业大学材料与制造学部,北京 100124
2 北京建筑材料科学研究总院有限公司固废资源化利用与节能建材国家重点实验室,北京 100041
C-S-H Nano-seed and Its Promoting Effect on Cement Hydration and Hardening:a Review
TANG Ruifeng1, ZHANG Jiale1, WANG Ziming1,*, CUI Suping1, WANG Zhaojia1,2, LAN Mingzhang1
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
2 State Key Laboratory of Soild Waste Utilization and Energy-Saving Building Materials, Beijing Building Materials Research Institute Co., Ltd., Beijing 100041, China
下载:  全 文 ( PDF ) ( 9279KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近些年来的研究发现,将一些纳米粒子加入到水泥中,可以为水化产物提供更多形核位点,降低水化产物的形核势垒,加快水泥的水化进程。这些纳米材料包括纳米SiO2、纳米CaCO3、纳米TiO2、碳纳米管、纳米水化硅酸钙(C-S-H)等。其中,人工合成的纳米C-S-H晶种与水泥水化产物C-S-H凝胶具有相似的化学组成,是C-S-H凝胶的良好的形核基质,在众多晶种材料中,对水泥水化的加速作用最为显著,成为近年来的研究热点。
   到目前为止,众多学者围绕C-S-H微/纳米材料的成核方式、制备方法及对水泥水化的促进机理进行了大量研究,发现采用共沉淀法在聚合物存在的条件下制备的纳米C-S-H晶种成核剂遵循非经典成核方式,其具有纳米级的晶粒尺寸和良好的分散稳定性。将纳米C-S-H晶种以一定掺量加入到水泥中,可以充当水泥水化产物C-S-H凝胶的额外成核位点,极大地降低了C-S-H凝胶的成核势垒,有效地促进了水泥水化速率和早期强度的发展,尤其可以显著提升水泥1 d龄期以内的强度。与常用的早强剂相比,这种纳米C-S-H晶种成核剂除具有掺量低、早强效果好、对水泥混凝土耐久性无不利影响的优点外,还可以在一定程度上弥补辅助性胶凝材料(SCMs)早期强度增长缓慢的问题。因此,纳米C-S-H晶种在低温施工、滑模施工、预制混凝土制品生产等对早期强度要求较高的工程中具有良好的应用前景,有潜力成为水泥混凝土的新型早强剂。
   本文尝试对众多研究成果进行总结分析,从纳米C-S-H晶种的成核方式、制备方法、与聚合物的作用机理以及对水泥水化过程的影响等方面进行综述,在明确现有的规律和成果的基础上,分析了目前存在的不足,得出尚待继续研究的问题,以期为未来纳米C-S-H晶种的科学研究、工程应用提供理论基础和发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐芮枫
张佳乐
王子明
崔素萍
王肇嘉
兰明章
关键词:  纳米水化硅酸钙  晶种  成核方式  水化  早期强度    
Abstract: In recent years, several nanoparticles have been studied as potential nucleation seeds for cement hydration. Synthetic nano-calcium silicate hydrate (C-S-H), nano-SiO2, nano-CaCO3, nano-TiO2, and carbon nanotubes are investigated to determine their abilities to reduce the nucleation barrier by providing nucleation sites for hydration products, thereby accelerating cement hydration. Among them, the nano C-S-H seeds are found to be a good nucleation substrate for C-S-H gel, and provided the most significant cement-hydration acceleration. Thus, nano C-S-H seeds are attracting increasing attention from both academia and industry.
To date, methods of synthesizing nano C-S-H seeds, as well as the seed nucleation process and mechanism of cement hydration, have all been studied. In many studies, the nano C-S-H suspension is prepared by co-precipitating in the presence of polymer that exhibited nanoscale-sized grains and good dispersion stability which followed a non-classical nucleation mode. After applying it to cement, nano C-S-H seeds, with a high surface area, acted as additional nucleation sites for C-S-H gel, which reduced the nucleation barrier of the C-S-H gel. Thus, the nano C-S-H seeds effectively accelerated the cement hydration rate. The nano C-S-H seeds also enhanced the early strength development of the cement, particularly within the first day of aging. In contrast to traditional cement accelerators, nano C-S-H seeds have the advantages of low dosing requirements, good effect on early strength, and no impact on cement and concrete durability. To a certain extent, these seeds also compensate for the slow early-strength growth of supplementary cementitious materials (SCMs). Therefore, nano C-S-H seeds have promising applications in low-temperature and slipform construction, the production of precast-concrete products, and other projects that require high levels of early strength. Nano C-S-H seeds have the potential to become a widely used hydration accelerator for cement and concrete.
In this review, many studies about nano C-S-H seeds are analyzed and summarized. Including the methods for synthesizing C-S-H seeds, as well their nucleation process, mechanism of interaction with polymers, and effects on the cement-hydration process. Based on theoretical principles and experimental results, current shortcomings are evaluated, and the problems that still need to be addressed are identified. This review provides a theoretical basis and future direction for scientific research and engineering applications of nano C-S-H seeds.
Key words:  nano calcium silicate hydrate    seed    nucleation mode    hydration    early strength
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TU528  
基金资助: 北京市自然科学基金-市教委联合资助项目(KZ202010005013)
通讯作者:  *王子明,博士,教授。1984年哈尔滨工业大学硅酸盐工程专业本科毕业,1987年硕士毕业于中国建筑材料科学研究院,2006年北京工业大学材料学专业博士毕业,自2000年在北京工业大学材料科学与工程学院任教至今。主要从事高性能水泥基材料、水泥混凝土流变学与化学外加剂和生态建材方面的研究工作。获得国家发明专利授权60余项,美国发明专利授权2项。编著《聚羧酸系高性能减水剂——制备·性能与应用》(中国建筑工业出版社)、《混凝土高效减水剂》(中国化工出版社),编译《水泥制造工艺技术》,在国内外期刊发表论文100余篇。wangziming@bjut.edu.cn   
作者简介:  唐芮枫,2016年6月和2019年6月,分别于山东理工大学和北京工业大学获得工学学士学位、硕士学位。现为北京工业大学材料与制造学部博士研究生,在王肇嘉教授、王子明教授和崔素萍教授的指导下进行研究。目前主要研究领域为高性能水泥基材料和水泥化学外加剂。
引用本文:    
唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
TANG Ruifeng, ZHANG Jiale, WANG Ziming, CUI Suping, WANG Zhaojia, LAN Mingzhang. C-S-H Nano-seed and Its Promoting Effect on Cement Hydration and Hardening:a Review. Materials Reports, 2023, 37(9): 21090259-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090259  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21090259
1 Domone P, Illston J. Construction Materials:their nature and behaviour, fourth edition, Spon Press, UK, 2010, pp. 83.
2 Monteiro P, Miller S A, Horvath A. Nature Materials, 2017, 16(7), 698.
3 Juenger M, Bernal S A, Snellings R. Cement and Concrete Research, 2019, 122, 257.
4 Miller S A. Journal of Cleaner Production, 2018, 178(20), 587.
5 Li J, Zhang W, Xu K, et al. Cement and Concrete Research, 2020, 137, 106195.
6 Diaz L I, Juenger M, Seraj S, et al. Cement and Concrete Composite, 2019, 101, 44.
7 Miller S A, Cunningham P R, Harvey J T. Resources Conservation and Recycling, 2019, 146, 416.
8 Elisabeth J, Thomas M, Dietmar S. Cement and Concrete Research, 2018, 113, 74.
9 Wang F, Kong X, Jiang L, et al. Construction and Building Materials, 2020, 249, 118734.
10 Zhang Y R, Kong X M, Lu Z B, et al. Cement and Concrete Research, 2015, 67, 184.
11 Mehdipour I, Kumar A, Khayat K H. Materials and Design, 2017, 127(5), 54.
12 Hewlett P C. Lea's Chemistry of Cement and Concrete, Fourthed Butterworth Heinemann Press, UK, 2003, pp. 641.
13 Aggoun S, Cheikhi M, Chikh N, et al. Construction and Building Materials, 2008, 22(2), 106.
14 Riding K, Silva D A, Scrivener K. Cement and Concrete Research, 2010, 40(6), 935.
15 Sanchez F, Sobolev K. Construction and Building Materials, 2010, 24(11), 2060.
16 Bru M, Lan M H, Hesse C, et al. Archives of Toxicology, 2012, 86(7), 1077.
17 Kanchanason V. Comprehensive study on calcium-silicate-hydrate-polycarboxylate superplasticizer (C-S-H-PCE) nanocomposites as accelerating admixtures in cement. Ph. D. Thesis, Technical University of Munich, Germany, 2018.
18 Wang Z, Yu Q, Gauvin F, et al. Cement and Concrete Research, 2020, 136, 106156.
19 Rashad A M. Construction and Building Materials, 2013, 48, 1120.
20 Ng D S, Paul S C, Anggraini V, et al. Construction and Building Materials, 2020, 258, 119627.
21 Gu Y, Ran Q P, Shu X, et al. Construction and Building Materials, 2016, 114, 673.
22 Ye Q, Zhang Z N, Kong D Y, et al. Construction and Building Materials, 2007, 21(3), 539.
23 Hlaváek P, Šulc R, Šmilauer V, et al. Cement and Concrete Composites, 2018, 90, 100.
24 Li L, Cao M, Yin H. Cement and Concrete Composites, 2019, 104, 103350.
25 Baueregger S, Lei L, Perello M, et al. Nanotechnology in Construction, DOI:10. 1007/978-3-319-17088-6_25.
26 Land G, Stepha D. Cement and Concrete Composites, 2015, 57, 64.
27 Kanchanason V, Plank J. Cement and Concrete Research, 2017, 102, 90.
28 Thomas J J, Jennings H M, Chen J J. Journal of Physic Chemistry, 2009, 113(11), 4327.
29 Bost P, Regnier M, Horgnies M. Construction and Building Materials, 2016, 113(15), 290.
30 Plank J, Echt T. In:SPE International Conference on Oilfield Chemistry. Texas, USA, 2019, pp.9.
31 Saikat D, Sonalisa R, Sudipta S. Construction and Building Materials, 2020, 233, 117214.
32 Theobald M, Plank J. Cement and Concrete Composites, 2022, 125, 104278.
33 Zhang J L, Wang Z M, Yao Y H, et al. Journal of Building Engineering, 2021, 44, 103360.
34 Kanchanason V, Plank J. In:14th International Congress on the Chemistry of Cement. Beijing, China, 2015, pp. 759.
35 Kanchanason V, Plank J. Construction and Building Materials, 2018, 169, 20.
36 Long G, Li Y, Ma C, et al. Thermochimica Acta, 2018, 664(10), 108.
37 Liu Z K, Hu J W, Weng Z C, et al. Concrete, 2020(4), 9 (in Chinese).
刘子科, 胡建伟, 翁智财, 等. 混凝土, 2020(4), 9.
38 Zhang G, Yang Y, Yang H, et al. Cement and Concrete Composites, 2019, 106, 103452.
39 Taylor H F W. Cement chemistry 2nd edition, Thomas Telford Press, UK, 1997, pp, 140.
40 Bosque I, Martínez R S, Blanco V M. Construction and Building Materials, 2014, 52, 314.
41 Taylor H F W. Advanced Cement Based Materials, 1993, 1(1), 38.
42 Li J, Zhang W, Monteiro P. ACS Sustainable Chemistry and Engineering, 2020, 33(8), 12453.
43 Grangeon S, Claret F, Linard Y, et al. Acta Crystallographica Section B:Structural Science, Crystal Engineering and Materials, 2013, 69, 465.
44 Zhu X, Jiang Z, He B, et al. Construction and Building Materials, 2020, 252, 119103.
45 Richardson I G. Cement and Concrete Composites, 2000, 22(2), 97.
46 Nicoleau L, Albrecht G, Lorenz K, et al. Patent Application, US20110269875, 2011.
47 Fujii K, Kondo W. Journal of the American Ceramic Society, 1983, 66(12), 220.
48 Taylor H F W. Journal American Ceramic Society, 1986, 69, 464.
49 Richardson I, Groves G W. Cement and Concrete Research, 1992, 22(6), 1001.
50 Yao W, He L. Journal of the Chinese Ceramic Society, 2010, 38(4), 754 (in Chinese).
姚武, 何莉. 硅酸盐学报, 2010, 38(4), 754.
51 Avrami M. Journal of Chemical Physics, 1939, 7(12), 1103.
52 Avrami M. Journal of Chemical Physics, 1940, 8(2), 212.
53 Thomas J J. Journal of the American Ceramic Society, 2007, 90(10), 3282.
54 Garraul S, Nonat A. Journal of Crystal Growth, 1999, 200, 565.
55 Garrault S, Finot E, Lesniewska E, et al. Materials and Structures, 2005, 38, 435.
56 Plank J, Schonlein M, Kanchanason V. Journal of Organometallic Che-mistry, 2018, 869, 227.
57 Artioli G, Valentini L, Voltolini M, et al. Crystal Growth and Design, 2015, 15(1), 20.
58 Valentini L, Favero M, Dalconi M C, et al. Crystal Growth and Design, 2016, 16(2), 646.
59 Krautwurst N, Nicoleau L, Dietzsch M, et al. Chemistry of Materials, 2018, 30, 2895.
60 Yoreo J D, Gilbert P U, Sommerdijk N A, et al. Science, 2015, 349, 6247.
61 Schonlein M, Plank J. Cement and Concrete Research, 2018, 106, 33.
62 Chiang W S, Fratini E, Ridi F, et al. Journal of Colloid and Interface Science, 2013, 398, 67.
63 Wang Y S, Lu L N, He Y J, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2020, 36(1), 103.
64 Zhong B Q, Yang N R. Journal of Naijing University of Technology, 1987, 9(2), 63 (in Chinese).
钟白茜, 杨南如. 南京工业大学学报, 1987, 9(2), 63.
65 Alizadeh R, Raki L, Makar J M, et al. Journal of Material Chemistry, 2009, 42(19), 7937.
66 Huang X, Jiang D, Tan S. Journal of the European Ceramic Society, 2003, 23(1), 123.
67 Houston J R, Maxwell R S, Carroll S A. Geochemical Transaction, 2009, 10(1), 1.
68 Lothenbach B, Nonat A. Cement and Concrete Research, 2015, 78, 57.
69 Land G, Stephan D. In:14th International Congress on the Chemistry of Cement. Beijing, China, 2015, pp. 32.
70 Wu J, Zhu Y. Materials, 2010, 22, 749.
71 Land G, Stephan D. Cement and Concrete Composites, 2018, 87, 73.
72 Kumar A, Walder B J, Mohamed A K, et al. Journal of Physic Chemistry, 2017, 121, 17188.
73 Nicoleau L. Journal of the Transportation Research Board, 2010, 2142, 42.
74 Wang F, Kong X, Wang D, et al. Journal of the American Ceramic Society, 2019, 102, 5103.
75 Pen X Q, He L J, Liu Y M. Journal of Chongqing University, 2005, 28(5), 59 (in Chinese).
彭小芹, 何丽娟, 刘艳萌. 重庆大学学报, 2005, 28(5), 59.
76 Shi L, Ma S H, Li W F, et al. Concrete. 2013(11), 101 (in Chinese).
石磊, 马素花, 李伟峰, 等. 混凝土, 2013(11), 101.
77 Zhao J, Zhu Y J, Wu J, et al. Journal of Colloid and Interface Science, 2014, 418, 208.
78 Zhang C Y, Cai Y, Kong X M, et al. Journal of the Chinese Ceramic Society, 2019, 47(5), 585.
张朝阳, 蔡熠, 孔祥明, 等. 硅酸盐学报, 2019, 47(5), 585.
79 Zhu X P, Jiang Z W, He B, et al. Construction and Building Materials, 2020, 252, 119103.
80 Chen J J, Sorelli L, Vandamme M, et al. Journal of the American Ceramic Society, 2010, 93(5), 1484.
81 Grangeon S, Fernandez M A, Baronnet A, et al. Journal of Applied Crystallography, 2017, 50(1), 14.
82 Chen Y Z, Zhong H X, Yin W S. Bulletin of the Chinese Ceramic Society, 2020, 39(6), 1788(in Chinese).
陈友治, 钟浩轩, 殷伟淞. 硅酸盐通报, 2020, 39(6), 1788.
83 Alizadeh R, Raki L, Makar J M, et al. Journal of Materials Chemistry, 2009, 19, 7936.
84 John E, Epping J D, Stephan D. Construction and Building Materials, 2019, 228, 116723.
85 Phattharachindanuwong C, Hansupalak N, Plank J, et al. Materials Research Bulletin, 2019, 97, 343.
86 Ller R K. The Chemistry of Silica:solubility, polymerization, colloid and surface properties, John Wiley and Sons Press, USA, 1979, pp. 65.
87 Wang Y Z, Zhao Q L, Zhou S Q. Bulletin of the Chinese Ceramic Society, 2018, 37(9), 2817.
王亚洲, 赵青林, 周尚群. 硅酸盐通报, 2018, 37(9), 2817.
88 Shen H Q. Research on preparation and characterization of polymer/hydrated calcium silicate nanocomposites. Master's Thesis, Beijing University of Technology, China, 2017 (in Chinese).
申和庆. 聚合物/水化硅酸钙纳米复合材料的制备与性能研究. 硕士学位论文, 北京工业大学, 2017.
89 Shang Z F. Effect of polymer PVA/PAM on the structure of C-S-H. Master's Thesis, Wuhan University of Technology, China, 2011 (in Chinese).
尚占飞. 掺杂聚合物PVA/PAM对水化硅酸钙结构影响研究. 硕士学位论文, 武汉理工大学, 2011.
90 Wu J, Zhu Y J, Chen F, et al. Dalton Transactions, 2013, 42(19), 7032.
91 Pelisser F, Gleize P J P, Mikowski A. Cement and Concrete Composites, 2014, 48(2), 1.
92 Wang H X. The structure and bonding linkage mechanism of the calcium silicate hydrates contained the organic complex molecule. Master's Thesis, China Building Materials Academy, China, 2005 (in Chinese).
王宏霞. 掺杂有机大分子水化硅酸钙的结构及键合原理. 硕士学位论文, 中国建筑材料科学研究院, 2005.
93 Yu J, Gao S, Hou D S, et al. Journal of Physical Chemistry B, 2020, 124(28), 6095.
94 Ha J, Chae S, Chou K W, et al. Journal of Materials Science, 2012, 47(2), 976.
95 Mojumdar S C, Raki L. Journal of Thermal Analysis and Calorimetry, 2006, 85(1), 99.
96 Chen H C, Qian C X, Zhao F, et al. Journal of Southeast University, 2015, 45(4), 745 (in Chinese).
陈怀成, 钱春香, 赵飞, 等. 东南大学学报, 2015, 45(4), 745.
97 Theobald M, Plank J. Construction and Building Materials, 2020, 264, 120240.
98 Zhou Y, Hou D, Manzano H, et al. ACS Applied Materials and Interfaces, 2017, 46(9), 41014.
99 Beaudoin J J, Draméh H, Raki L, et al. Materials and Structures, 2009, 42 (7), 1003.
100 Jamil T, Javadi A, Heinz H. Green Chemistry, 2020, 22, 1577.
101 Sun J, Shi H, Qian B, et al. Construction and Building Materials, 2017, 140, 282.
102 Shen H, Wang Z, Liu X, et al. Materials Science Forum, 2017, 898, 2089.
103 Orozco C A, Chun B W, Geng G, et al. Langmuir, 2017, 33(14), 3404.
104 Sobolev K, Ferrada G M. American Ceramic Society Bulletin, 2005, 84(11), 16.
105 Liang G, Ni D, Li H, et al. Construction and Building Materials, 2021, 272, 121891.
106 Hanus M J, Harris A T. Progress in Materials Science, 2013, 58(7), 1056.
107 Nicoleau L. Zkg International, 2013, 1(1), 40.
108 Wang L, Guo F, Lin Y, et al. Construction and Building Materials, 2020, 250, 11726.
109 Kanchanason V, Plank J. Construction and Building Materials, 2018, 169, 20.
110 Szostak B, Golewski G L. Energies, 2020, 24(13), 6743.
111 Szostak B, Golewski G L. MATEC Web of Conferences, DOI:org/10. 1051/matecconf/202032301016.
112 Das S, Ray S, Sarkar S. Construction and Building Materials, 2020, 233, 117214.
113 Zou F B, Hu C L, Wang F Z, et al. Journal of Cleaner Production, 2020, 244, 118566.
114 Puligill A S, Chen X, Mondal P. Materials and Structure, 2019, 52, 65.
115 Xu C, Li H, Yang X. Construction and Building Materials, 2020, 238, 117726.
116 Kanchanason V, Plank J. Cement and Concrete Research, 2019, 119, 44.
117 Hubler M H, Thomas J J, Jennings H M. Cement and Concrete Research, 2011, 41, 842.
118 Ouellet P C, Scherb S, Kberl M, et al. Construction and Building Materials, 2020, 245, 118439.
119 Kong D, Huang S, Corr D, et al. Cement and Concrete Composites, 2018, 87, 98.
120 Scrivener K L, Nonat A. Cement and Concrete Research, 2011, 41(7), 651.
121 Zhang G, Yang Y, Li H. Construction and Building Materials, 2020, 264, 120191.
122 Feng Q, Mao Y H, Peng Z G, et al. Arabian Journal for Science and Engineering, DOI:org/10. 1007/s13369-021-05558-y.
123 Wang Y, Lu H, Wang J, et al. Crystals, 2020, 10(9), 816.
124 Wyrzykowskia M, Assmannb A, Hesse C, et al. Cement and Concrete Research, 2020, 129, 105967.
125 Hu J W, Xie Y J, Liu Z K, et al. Journal of Civil and Environmental Engineering, 2021, 43(2), 138 (in Chinese).
胡建伟, 谢永江, 刘子科, 等. 土木与环境工程学报, 2021, 43(2), 138.
126 Li S M, Zheng X G, Xie Y J, et al. Railway Engineering, 2019, 59(1), 134 (in Chinese).
李书明, 郑新国, 谢永江, 等. 铁道建筑, 2019, 59(1), 134.
127 Pedrosa H C, Reales O M, Reis V D, et al. Cement and Concrete Research, 2020, 129, 105978.
128 Wu W, Yin X G, Zhao M M, et al. Sichuan Building Materials, 2019, 45(12), 120 (in Chinese).
吴伟, 尹小鸽, 赵明敏, 等. 四川建材, 2019, 45(12), 120.
129 Li H, Xue Z, Liang G, et al. Construction and Building Materials, 2021, 226, 121096.
130 Deng Z L, Wang W S, Lu G M, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2021, 36(3), 387.
131 García T E, Sonebi M, Crossett P, et al. Journal of Sustainable Cement-Based Materials, 2015, 5(3), 157.
132 Zhang D W, Wang D M. Bulletin of the Chinese Ceramic Society, 2015, 34(6), 1583 (in Chinese).
张大旺, 王栋民. 硅酸盐通报, 2015, 34(6), 1583.
133 Liu Z Y. Rheological behavior control and mechanical properties characterization of 3D printing cement-based materials. Master's Thesis, China Building Materials Academy, China, 2019 (in Chinese).
刘致远. 3D打印水泥基材料流变性能调控及力学性能表征. 硕士学位论文, 中国建筑材料科学研究总院, 2019.
134 Kong D, He G, Pan H, et al. Materials, 2020, 13(10), 2345.
135 Li Q S, Shan C H, Zhang H T, et al. Journal of Chongqing University of Technology (Natural Science), 2022, 36(8), 217 (in Chinese).
李秋实, 单朝晖, 张海涛, 等. 重庆理工大学学报(自然科学), 2022, 36(8), 217.
[1] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[2] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[5] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[6] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[7] 宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
[8] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[9] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[10] 刘猛, 王庆, 朱晨, 顿鹏, 刘勇. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(Z1): 22020111-5.
[11] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[12] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[13] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[14] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[15] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed