Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21090236-8    https://doi.org/10.11896/cldb.21090236
  高分子与聚合物基复合材料 |
聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能
鲁玉鑫1, 卢林刚2,*
1 中国人民警察大学研究生院,河北 廊坊 065000
2 中国人民警察大学科研处,河北 廊坊 065000
Flame Retardancy and Mechanical Properties of Ammonium Polyphosphate-Tannic Acid-Melamine/Epoxy Resin Composites
LU Yuxin1, LU Lingang2,*
1 Graduate School, Chinese People's Police University, Langfang 065000, Hebei, China
2 Department of Scientific and Technology, Chinese People's Police University , Langfang 065000, Hebei, China
下载:  全 文 ( PDF ) ( 4345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统膨胀型阻燃剂由酸源聚磷酸铵(APP)、碳源季戊四醇(PER)和气源三聚氰胺(MEL)按质量比3∶1∶1的配比组成。现将生物质单宁酸(TA)替代PER并与APP和MEL复配成绿色膨胀型阻燃剂应用于环氧树脂中,考察不同配比的酸源APP、新型碳源TA和气源MEL添加到环氧树脂(EP)中对复合材料的阻燃性能和力学性能的影响。实验结果表明:当新型膨胀型阻燃剂的添加量为20%(质量分数),APP、TA、MEL质量比为9.71∶6.61∶3.68时,所得到的阻燃EP-3复合材料的极限氧指数(LOI)值增长到38.80%,UL-94测试达到V-0级;锥形量热测试表明EP-3的热释放速率峰值(pHRR)、总热释放(THR)、总烟气生成量(TSP)和一氧化碳释放率平均值(av-CO)与添加传统膨胀型阻燃剂EP-0相比分别下降48.96%、14.33%、26.83%和28.01%,这说明APP/TA/MEL绿色膨胀型阻燃剂具有优异的协同阻燃效果;其次,通过TG、DTG和 SEM 分析可推测,该阻燃剂的阻燃机理为气相和固相协同阻燃机理,特别是该阻燃剂可促使基材形成致密强度高的炭层从而较大地提升固相阻燃效果。另外,力学性能测试表明,新型碳源TA有利于改善阻燃EP复合材料的拉伸强度和弯曲强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁玉鑫
卢林刚
关键词:  单宁酸  膨胀型阻燃剂  环氧树脂  阻燃性能    
Abstract: The traditional intumescent flame retardant is composed of acid source ammonium polyphosphate (APP), carbon source pentaerythritol (PER) and gas source melamine (MEL) at the mass ratio of 3∶1∶1. Biomass-tannic acid (TA) was used as a green intumescent flame retardant in epoxy resin instead of PER with APP and MEL. The effects of different ratios of acid source APP, new carbon source TA and gas source MEL on the flame retardancy and mechanical properties of epoxy resin (EP) composites were investigated. The experimental results showed that when the addition of the new intumescent flame retardant was 20wt% and the mass ratio of APP∶TA∶MEL was 9.71∶6.11∶3.68, the LOI value of the obtained flame retardant EP-3 composites increased to 38.80% and the UL-94 test reached V-0 level. Cone calorimetric tests showed that the peak heat release rate (PHRR), total heat release (THR), total smoke generation (TSP) and average carbon monoxide release rate (av-CO) of EP-3 decreased by 48.96%, 14.33%, 26.83% and 28.01%, respectively, compared with those of EP-0 added conventional intumescent flame retardants, which indicated that APP/TA/MEL green flame retardants had excellent synergistic flame retardant effect. Moreover, the TG, DTG and SEM analysis revealed that the flame retardant mechanism was a synergistic mechanism of gas phase and solid phase flame retardant. In particular, the flame retardant promoted the formation of the carbon layer with high density and strength of the substrate, thus greatly improving the solid phase flame retardant effect. In addition, the mechanical property test showed that the new carbon source TA was beneficial to improve the tensile strength and flexural strength of the flame retardant EP composites.
Key words:  tannic acid    intumescent flame retardant    epoxy resin    flame retardancy
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TB332  
基金资助: 国家自然科学基金(21472241);河北省自然科学基金(E2016507027)
通讯作者:  *卢林刚,中国人民警察大学教授、硕士研究生导师。1998年本科毕业于西北大学化学系;2001年毕业于西北大学化学系,获硕士学位;2004年毕业于中科院化学研究所,获博士学位。目前主要研究领域为消防功能材料、危险化学品泄漏事故现场应急救援处置技术与应用研究,获国家发明专利4项,在国内外核心学术期刊发表论文70余篇,被SCI、EI等检索20余篇,出版著作与教材4部。llg@iccas.ac.cn   
作者简介:  鲁玉鑫,2019年6月毕业于河北民族师范学院,获得理学学士学位。现为中国人民警察大学消防材料专业硕士研究生,在卢林刚教授的指导下进行研究。目前主要研究领域为阻燃材料的开发与应用。
引用本文:    
鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
LU Yuxin, LU Lingang. Flame Retardancy and Mechanical Properties of Ammonium Polyphosphate-Tannic Acid-Melamine/Epoxy Resin Composites. Materials Reports, 2023, 37(9): 21090236-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090236  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21090236
1 Zhang Q, Yang S, Wang J, et al. Polymer Degradation and Stability, 2019, 167, 10.
2 Zhang L L, Liu A H, Zeng X R. Journal of Applied Polymer Science, 2009, 111(1), 168.
3 Tang Q, Wang B, Shi Y, et al. Industrial & Engineering Chemistry Research, 2013, 52(16), 5640.
4 Zhao C X, Deng L M, Huang Z Y. Acta Polymerica Sinica, 2015(4), 382.
5 Zou Z P, Xiao X, Tian J, et al. China Synthetic Resin and Plastics, 2020, 37 (1), 97(in Chinese).
邹政平, 肖啸, 田杰, 等. 合成树脂及塑料, 2020, 37 (1), 97.
6 Hergenrother P M, Thompson C M, Smith Jr J G, et al. Polymer, 2005, 46, 5012.
7 Yao F Q, Tao J J, Wang H H, et al. Chemistry and Industry of Forest Products, 2017, 37(5), 19(in Chinese).
姚奉奇, 陶骏骏, 王海晖, 等. 林产化学与工业, 2017, 37(5), 19.
8 Kolb V M. Green Organic Chemistry and its Interdisciplinary Applications, CRC Press, Taylor and Francis, 2017.
9 Carole T M, Pellegrino J, Paster M D. Applied Biochemistry and Biotechnology, 2004, 115(1-3), 871.
10 Mohanty A K, Misra M, Drzal L T. Journal of Polymers and the Environment, 2002, 10(1-2), 1140.
11 Gandini A. Macromolecules, 2008, 41(24), 9491.
12 Grigsby W, Bridson J, Lomas C, Elliot J. Polymers, 2013, 5, 344.
13 Kiratitanavit W, Xia Z, Singh A, et al. Combustion, 2016, 9, 1.
14 Zhu M, He Z, Du T Y, et al. Journal of North China Institute of Science and Technology, 2019, 16(6), 48(in Chinese).
朱敏, 何圳, 杜天意, 等. 华北科技学院学报, 2019, 16(6), 48.
15 Meng W, Dong Y, Li J, et al. Composites Part B:Engineering, 2020, 188,107854.
16 Li J J, Ou Y X. Flame retardant theory, Science Press, China, 2013, pp. 80(in Chinese).
李建军, 欧育湘. 阻燃理论, 科学出版社, 2013, pp.80.
17 Camino G, Costa L, Martinasso G. Polymer Degradation and Stability, 1989, 23, 359.
18 Fan J J, Min Y, Yang J, et al. Materials Reports, 2021, 35(10), 10189(in Chinese).
范娟娟, 闵样, 杨吉, 等. 材料导报, 2021, 35(10), 10189.
19 Lu L G, Cheng Z, Qiu X M, et al. Chemical Journal of Chinese Universities, 2018, 39(12), 2789(in Chinese).
卢林刚, 程哲, 丘新铭, 等. 高等学校化学学报, 2018, 39(12), 2789.
20 Li X, Chen R H, Wei Y, et al. Acta Materiae Compositae Sinica, 2021, 38(9), 2796(in Chinese).
李想, 陈润华, 魏毅, 等. 复合材料学报, 2021, 38(9), 2796.
21 Jiao C, Zhuo J, Chen X, et al. Journal of Thermal Analysis and Calori-metry, 2012, 114 (1), 253.
22 Lu L G, Zhou X, Zhao M. Plastic, 2010, 39(5), 21(in Chinese).
卢林刚, 周霞, 赵敏. 塑料, 2010, 39(5), 21.
23 Ma W, Xu B, Shao L S et al. Macromolecular Materials and Engineering, 2019, 304 (12), 1.
24 Qu L, Zhang C, Li P, et al. RSC Advances, 2018, 8 (52), 29816.
25 Alongi J, Ciobanu M, Malucelli G. Carbohydrate Polymers, 2011, 85(3), 599.
[1] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[2] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[3] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[4] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[5] 何兆益, 谭洋伟, 李家琪, 张权, 吴逸飞. 埃洛石纳米管协效阻燃改性沥青性能及机理研究[J]. 材料导报, 2022, 36(2): 20110080-8.
[6] 陈春悦, 徐春萍, 张永航, 龚维, 班大明. 磷杂菲添加型阻燃剂对乙烯基酯树脂改性探究[J]. 材料导报, 2022, 36(15): 21040246-5.
[7] 吉静茹, 许智鹏, 强军锋, 刘育红. 有机硅改性环氧树脂薄膜封装材料的制备及性能研究[J]. 材料导报, 2022, 36(11): 20120032-9.
[8] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[9] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[10] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[11] 康兴隆, 鲁哲宏, 柳妍, 冯伟丽, 刘保英, 房晓敏, 丁涛. 改性纳米二氧化硅协效二乙基次磷酸铝阻燃尼龙6[J]. 材料导报, 2021, 35(18): 18047-18051.
[12] 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217.
[13] 唐启恒, 郭文静. 三聚氰胺聚磷酸盐/次磷酸铝对高密度纤维板阻燃和力学性能的影响[J]. 材料导报, 2021, 35(16): 16166-16171.
[14] 陈谦, 王朝辉, 傅豪, 樊振通, 刘鲁清. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16): 16172-16177.
[15] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed