Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 22020025-6    https://doi.org/10.11896/cldb.22020025
  高分子与聚合物基复合材料 |
环氧导电胶的反应动力学及其应用
张进1,*, 谭璐1, 邢宝岩1,2, 李作鹏1, 赵建国1,2,*, 屈文山1, 张璐1
1 山西大同大学化学与化工学院,山西 大同 037009
2 太原理工大学材料科学与工程学院,太原 030000
Kinetics of Epoxy Conductive Adhesive and Its Application
ZHANG Jin1,*, TAN Lu1, XING Baoyan1,2, LI Zuopeng1, ZHAO Jianguo1,2,*, QU Wenshan1, ZHANG Lu1
1 College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, Shanxi, China
2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030000, China
下载:  全 文 ( PDF ) ( 3272KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳系环氧导电胶在电子工业领域应用广泛,其反应动力学研究具有重要理论和应用价值。本研究采用非等温差示扫描量热法(DSC)探究其固化反应的动力学过程。利用Kissinger极值法获得了该导电胶的表观活化能为57.6 kJ/mol,并由Starink等转化率法获得该导电胶活化能随固化度的变化情况,研究发现,该导电胶的活化能随着固化度增大而增大,但平均活化能接近57.6 kJ/mol。采用Sestal-Berggren自催化模型和改进的变活化能模型对导电胶的固化过程进行模拟,结果表明,改进的变活化能模型理论计算和实验数据具有良好的一致性。在此基础上,初步探讨了动力学方程在该导电胶恒温固化过程中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张进
谭璐
邢宝岩
李作鹏
赵建国
屈文山
张璐
关键词:  导电胶  固化动力学  环氧树脂  等转化率法  变活化能模型    
Abstract: Carbon based epoxy conductive adhesive is widely used in electronic industry, and the study of its reaction kinetics has important theoretical and application significance. Curing kinetics of the conductive adhesive system was studied by non-isothermal differential scanning calorimeters (DSC). According to the Kissinger method, the apparent activation energy of the curing reaction was 57.6 kJ/mol. By the Starink isoconversion method for the conductive adhesive, the changes of activation energy (E) versus conversion (α) were obtained, and it was pointed out that the activation energy of the conductive adhesive increased with the increase of the conversion, but the average activation energy was close to 57.6 kJ/mol. The Sestal-Berggren (SB) autocatalytic kinetic model and E variable autocatalytic kinetic model were used to describe the curing reaction process of the studied system. Compared with the SB autocatalytic model, the E variable autocatalytic kinetic model showed a good agreement with experimental data of the conductive adhesive. The obtained model can be used in the calculation of the curing process of the conductive adhesive and provides theoretical guidance for the application of the conductive adhesive.
Key words:  conductive adhesive    curing kinetic    epoxy resin    isoconversion method    E variable autocatalytic kinetic model
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  O643.1  
基金资助: 国家自然科学基金(52071192);山西省科技重大专项(20181102003);甘肃省青年科技基金(20JR5RE647);大同市重点研发项目(2020013)
通讯作者:  *张进,山西大同大学化学与化工学院副教授、硕士研究生导师。2008年于燕山大学化学工程与工艺专业本科毕业,2010年于哈尔滨工程大学化学工程专业硕士毕业,2013年于哈尔滨工程大学材料学功能材料制备及理论专业博士毕业。目前主要从事环氧应用技术开发、功能涂层材料设计开发及反应动力学研究工作。发表SCI收录论文34篇,其中第一作者一区SCI论文3篇,授权发明专利2项,实用新型专利4项。zhangjing8014484@163.com
赵建国,山西大同大学化学与化工学院教授、博士研究生导师,煤基生态碳汇技术教育部工程研究中心主任。1996年于山西大学化学系本科毕业,2002年于西北大学分析化学专业硕士毕业,2005年于西北工业大学材料学专业博士毕业。目前主要从事石墨烯应用技术、纳米功能材料设计开发方面的研究。发表SCI收录论文200余篇,授权发明专利26项,获得山西省科技进步奖、国防科技进步奖、侯德榜化工科技奖。jgzhaoshi@163.com   
引用本文:    
张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
ZHANG Jin, TAN Lu, XING Baoyan, LI Zuopeng, ZHAO Jianguo, QU Wenshan, ZHANG Lu. Kinetics of Epoxy Conductive Adhesive and Its Application. Materials Reports, 2023, 37(8): 22020025-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020025  或          http://www.mater-rep.com/CN/Y2023/V37/I8/22020025
1 Zhang B. Study on preparation and properties of isotropic conductive adhesive nanocomposites with high performance. Master's Thesis, Beijing University of Chemical Technology, China, 2011 (in Chinese).
张博. 高性能纳米复合各项同性导电胶的制备与性能研究. 硕士学位论文, 北京化工大学, 2011.
2 Ke Y P. Research on high performance silver conductive adhesive for microelectronic assembly. Master's Thesis, Central South University, China, 2008 (in Chinese).
柯于鹏. 微电子组装用高性能银粉导电胶研究. 硕士学位论文, 中南大学, 2008.
3 Masaebi N, Peighambardoust S J, Ahadzadeh I. Journal of Materials Science, 2018, 29(14), 11840.
4 Si P, Trinidad J, Chen L, et al. Journal of Materials Science, 2018, 29, 1837.
5 Ma C G, Xi D Y, Liu M. Journal of Composite Materials, 2013, 47, 1153.
6 Schueler R, Petermann J, Schulte K, et al. Wiley, 1996, 104(1), 261.
7 Yang X, He W, Wang S, et al. Journal of Materials Science, 2012, 23, 108.
8 Zhao J, Zhang D. Polymer Composites, 2017, 38(5), 846.
9 Mei K W, Li J W, Liao Y H, et al. Chemical Industry Time, 2021, 35(7), 7(in Chinese).
梅凯文, 李嘉炜, 廖宇恒, 等. 化工时刊. 2021, 35(7), 7.
10 Wan J, Bu Z, Xu C, et al. Chemical Engineering Journal, 2011, 171(1), 357.
11 He X, Wang J, Wang Y, et al. European Polymer Journal, 2013, 49(9), 2759
12 Zhang J, Dong H, Tong L, et al. Thermochimica Acta, 2012, 549, 63.
13 Dong H X, Zhao Q C, Zhang J, et al. CIESC Journal, 2014, 65(11), 4392(in Chinese).
董红星, 赵庆晨, 张进, 等. 化工学报, 2014, 65(11), 4392.
14 Vyazovkin S, Burnham A K, Criado J M, et al. Thermochimica Acta, 2011, 520(1), 1.
15 Chen J, Zhang W, Li X, et al. Journal of Testing and Evaluation, 2014, 42(2), 298.
16 Zhou T, Gu M, Jin Y, et al. Polymer, 2005, 46(16), 6174.
17 Wang D N, Guo B D, Yang C M. Electronics & Packaging, 2020, 20(9), 12(in Chinese).
王殿年, 郭本东, 杨春梅. 电子与封装, 2020, 20(9), 12.
18 Hu R Z, Shi Q Z. Thermal analysis kinetics, Science Press, China, 2008, pp.65(in Chinese).
胡荣祖,史启祯.热分析动力学, 科学出版社, 2008, pp.65.
19 Kandelbauer A, Wuzella G, Mahendran A, et al. Chemical Engineering Journal, 2009, 152(2), 556.
20 Wan J, Li C, Bu Z, et al. Chemical Engineering Journal, 2012, 188, 160.
21 Starink M J. Thermochimica Acta, 2003, 404(1-2), 163.
22 Wu F, Zhou X, Yu X. RSC Advances, 2018, 8(15), 8248.
23 Xiong X, Zhou L, Ren R, et al. Polymer Testing, 2018, 68, 46.
24 Blanco M, Corcuera M A, Riccardi C C, et al. Polymer, 2005, 46(19), 7989.
25 Zhang W J, Zhang Z G, Sun Z J, et al. Acta Polymerica Sinica, 2006(4), 564(in Chinese).
赵卫娟, 张佐光, 孙志杰, 等. 高分子学报, 2006(4), 564.
26 Zhang G, Cheng J, Shi L, et al. Thermochimica Acta, 2012, 538, 36.
27 Yoo M J, Kim S H, Park S D, et al. European Polymer Journal, 2010, 46(5), 1158.
28 Zhang J. Study on curing kinetics and process optimization of CMC/epoxy resin. Ph.D. Thesis,Harbin Engineering University, China, 2013 (in Chinese).
张进. CMC/环氧树脂固化动力学及工艺优化研究. 博士学位论文, 哈尔滨工程大学, 2013.
29 Sun G, Sun H, Liu Y, et al.Polymer, 2007, 48(1), 330.
[1] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[2] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[3] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[4] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[5] 吉静茹, 许智鹏, 强军锋, 刘育红. 有机硅改性环氧树脂薄膜封装材料的制备及性能研究[J]. 材料导报, 2022, 36(11): 20120032-9.
[6] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[7] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[8] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[9] 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217.
[10] 陈谦, 王朝辉, 傅豪, 樊振通, 刘鲁清. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16): 16172-16177.
[11] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[12] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[13] 吴加雪, 张天栋, 张昌海, 冯宇, 迟庆国, 陈庆国. 高导热环氧树脂的研究进展[J]. 材料导报, 2021, 35(13): 13198-13204.
[14] 陈阳, 刘志勇, 管焓宇, 钱百惠. 水性聚氨酯增韧环氧树脂研究及应用进展[J]. 材料导报, 2021, 35(13): 13205-13214.
[15] 颜蜀雋, 熊海龙, 庞忠荣, 万鹏颖, 庄壮, 齐福刚. 新型无机纳米填料改性海泡石的制备及在环氧树脂涂料中的性能[J]. 材料导报, 2021, 35(12): 12057-12062.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed