Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20110080-8    https://doi.org/10.11896/cldb.20110080
  无机非金属及其复合材料 |
埃洛石纳米管协效阻燃改性沥青性能及机理研究
何兆益1, 谭洋伟2, 李家琪2, 张权2, 吴逸飞3
1 重庆交通大学交通运输工程学院,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
3 重庆建工集团,重庆 400014
Study on the Performance and Mechanism of Asphalt Synergistically Modified by Halloysite Nanotubes and Conventional Flame Retardant
HE Zhaoyi1, TAN Yangwei2, LI Jiaqi2, ZHANG Quan2, WU Yifei3
1 College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 Chongqing Construction Engineering Group, Chongqing 400014, China
下载:  全 文 ( PDF ) ( 8312KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究埃洛石纳米管(HNTs)协效常规阻燃剂(CFR)改性沥青的阻燃性能及机理,首先采用极限氧指数仪、克利夫兰开口杯和锥形量热仪对SBS改性沥青、常规阻燃改性沥青和埃洛石纳米管协效阻燃改性沥青进行阻燃性能测试;然后采用热重-差示扫描量热仪(TGA-DSC)研究沥青燃烧过程的质量损失和热量变化,采用傅里叶红外光谱仪(FTIR)和热重-红外联用技术(TG-FTIR)研究沥青燃烧过程中固相物质和气态产物的时程变化,采用数码相机(DC)和场发射扫描电镜(FESEM)表征沥青残渣的宏微观形貌,来探寻HNTs协效CFR改性沥青的阻燃机制。研究结果表明:1%HNTs复配8%CFR(质量分数,下同)改性沥青的极限氧指数(LOI)和自燃温度(SIT)分别为25.5%、441 ℃,说明添加阻燃剂使沥青变为难燃物质;同时阻燃沥青的热释放速率峰值(PHRR)和烟释放速率峰值(PSPR)也明显降低,说明HNTs协效CFR改性沥青具有良好的阻燃性能和抑烟性能。通过热重及热量变化发现了阻燃剂靶向分解的吸热阻燃机理,通过固相物质的转变规律发现了磷酸催化沥青成炭的凝聚相阻燃机理,通过气态产物的转变规律发现了磷系自由基淬灭燃烧的气相阻燃机理,通过沥青残渣的形貌表征分析发现了阻燃剂增强残渣完整性和致密程度的阻隔层阻燃机理,最后基于全相态物质变迁规律揭示了HNTs协效CFR改性沥青的阻燃机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何兆益
谭洋伟
李家琪
张权
吴逸飞
关键词:  道路沥青  埃洛石纳米管  阻燃剂  阻燃性能  抑烟性能  协同增效作用  全相态阻燃机理    
Abstract: In order to study the flame retardant performance and mechanism of asphalt synergistically modified by halloysite nanotubes (HNTs) and conventional flame retardant (CFR), firstly the limiting oxygen index meter, Cleveland open cup, and cone calorimeter were used to test the flame retardant properties of SBS modified asphalt, CFR modified asphalt, and asphalt synergistically modified by HNTs and CFR respectively. Then, the thermogravimetric-differential scanning calorimeter (TGA-DSC) was used to study the mass loss and heat change during the combustion process of asphalt. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG-FTIR) were used to study the changes of solid matter and gaseous products over time change during the combustion process of asphalt. Digital ca-mera (DC) and field emission scanning electron microscope (FESEM) were used to characterize the macro and micro morphology of the asphalt residue. The flame-retardant mechanism of asphalt synergistically modified by HNTs and CFR was explored. The research results show that the limiting oxygen index (LOI) and self-ignition temperature (SIT) of asphalt modified by 1%HNTs and 8%CFR (mass fraction, the same below) are 25.5% and 441 ℃ respectively, indicating that adding flame retardant turns the asphalt into a non-flammable substance. At the same time, the peak of heat release rate (PHRR) and the peak of smoke produce rate (PSPR) of the flame-retardant asphalt are also significantly reduced, indicating that the asphalt synergistically modified by HNTs and CFR has excellent flame retardancy and smoke suppression properties. The endothermic flame-retardant mechanism of targeted decomposition of flame retardants is discovered through thermogravimetric and thermal changes. The condensed phase flame-retardant mechanism of phosphoric acid catalyzing asphalt into charcoal is discovered through the transformation law of solid-phase substances. The gaseous phase flame retardant mechanism of phosphorus radical quenching combustion is discovered through the transformation law of gaseous products. The flame retardant mechanism of the barrier layer that the flame retardant can enhance the integrity and compactness of the residue is discovered through the characterization and analysis of the morphology of the asphalt residue. The flame retardant mechanism of asphalt synergistically modified by HNTs and CFR is revealed based on the law of full-phase material changes.
Key words:  road asphalt    halloysite nanotubes    flame retardant    flame retardancy performance    smoke suppression performance    synergistic effect    full phase flame retardant mechanism
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  U414  
基金资助: 国家自然科学基金(51978116);重庆市研究生科研创新项目(CYS20283)
通讯作者:  hzyzwb@cqjtu.edu.cn20110080-1   
作者简介:  何兆益,博士,教授,重庆交通大学交通运输学院院长,主要从事道路新材料的研发。近年来先后主持国家自然科学基金4项,出版学术专著6部,发表论文140余篇,SCI/EI/ISTP收录论文40余篇,获国家专利授权10项。
引用本文:    
何兆益, 谭洋伟, 李家琪, 张权, 吴逸飞. 埃洛石纳米管协效阻燃改性沥青性能及机理研究[J]. 材料导报, 2022, 36(2): 20110080-8.
HE Zhaoyi, TAN Yangwei, LI Jiaqi, ZHANG Quan, WU Yifei. Study on the Performance and Mechanism of Asphalt Synergistically Modified by Halloysite Nanotubes and Conventional Flame Retardant. Materials Reports, 2022, 36(2): 20110080-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110080  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20110080
1 Qiu J L, Yang T, Wang X L,et al. Construction and Building Materials. 2019, 195, 468.
2 Tan Y Q, Lan B W, Ji L, et al. Journal of Chongqing Jiaotong University (Natural Science), 2009, 28(4),711(in Chinese).
谭忆秋, 蓝碧武, 纪伦, 等. 重庆交通大学学报(自然科学版), 2009, 28(4),711.
3 Savov K, Lackner R, Mang H A. Fire Safety Journal, 2005, 40(8),745.
4 Wu K, Huang Z Y. Journal of Zhejiang University(Engineering Science), 2008, 42(1),134(in Chinese).
吴珂, 黄志义. 浙江大学学报(工学版), 2008, 42(1),134.
5 Xiao F P, Guo R, Wang J G. Construction and Building Materials. 2019, 212, 841.
6 Xu T, Shi H Q, Wang H, et al. Construction and Building Materials. 2014, 64, 47.
7 Zhu K, Huang Z Y, Wu K, et al. Journal of Zhejiang University(Engineering Science), 2015, 49(5),963(in Chinese).
朱凯, 黄志义, 吴珂, 等. 浙江大学学报(工学版), 2015, 49(5),963.
8 Huang Z Y, Wu B, Kang C, et al. Journal of Zhejiang University(Engineering Science), 2016, 50(1),27(in Chinese).
黄志义, 武斌, 康诚, 等. 浙江大学学报(工学版), 2016, 50(1),27.
9 Qian G P, Yu H N, GONG X, et al. Journal of Materials in Civil Engineering. 2019, 31(11), 04019280.
10 Ling T Q, Zhang R Z, Ning H Y, et al. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(5), 948(in Chinese).
凌天清, 张睿卓, 宁华宇, 等. 重庆交通大学学报(自然科学版), 2011, 30(5), 948.
11 Fu Q L, Wei J G, Peng W J, et al. China Journal of Highway and Transport, 2020, 33(2), 44(in Chinese).
付其林, 魏建国, 彭文举, 等. 中国公路学报, 2020, 33(2), 44.
12 Li L H, Zou X L, Chen C Y. Journal of Building Materials, 2013, 16(1), 76(in Chinese).
李立寒, 邹小龙, 陈春羽. 建筑材料学报, 2013, 16(1), 76.
13 Wei J G, Xie C, Fu Q L. China Journal of Highway and Transport, 2013, 26(6), 30(in Chinese).
魏建国, 谢成, 付其林. 中国公路学报, 2013, 26(6), 30.
14 Wang D W, Luo G C, Deng X M, et al. China Journal of Highway and Transport, 2017, 30(5), 59 (in Chinese).
王大伟, 罗根传, 邓祥明, 等. 中国公路学报, 2017, 30(5), 59.
15 Jin L, Wei J G, Fu Q L,et al. Journal of Chang'an University (Natural Science Edition), 2020, 40(2), 47 (in Chinese).
金雷, 魏建国, 付其林, 等. 长安大学学报(自然科学版), 2020, 40(2), 47.
16 Alice B, Filippo M, Giovanna B, et al. Construction and Building Materials, 2013, 47, 990.
17 Pei J Z, Wen Y, Li Y W, et al. Construction and Building Materials, 2014, 72, 41.
18 Zhu K. Study on calcium-based flame retardant nanocomposites base on multi-components combustion characteristics of asphalt. Ph.D. Thesis, Zhejiang University, China, 2015 (in Chinese).
朱凯. 基于沥青多组分燃烧特性的钙基纳米复合阻燃体系研究. 博士学位论文, 浙江大学, 2015.
19 Yang X L, Shen A Q, Su Y X, et al. Construction and Building Mate-rials, 2020, 236, 117576.
20 Liang Y S, Yu J Y, Li W Z, et al. Journal of Wuhan University of Technology, 2013, 35(10), 38(in Chinese).
梁永胜, 余剑英, 李汶卒, 等. 武汉理工大学学报, 2013, 35(10), 38.
21 Liang Y S, Yu J Y. Construction and Building Materials, 2013, 48, 1114.
22 Yang G, Yu J Y, Li Y H, et al. Journal of Wuhan University of Technology. 2016, 38(5), 8.
杨光, 余剑英, 李玉环, 等. 武汉理工大学学报, 2016, 38(5), 8.
23 Zhao J W. Combined retarding of asphalt based on mechanism of components separation. Ph.D. Thesis, Southeast University, China,2015 (in Chinese).
赵洁雯. 基于沥青各组分热力学特性的复合阻燃机理研究, 博士学位论文, 东南大学, 2017.
24 Zhu K, Wang Y H, Tang D Q, et al. Materials, 2019, 12, 801.
25 Li M L, Pang L, Chen M Z, et al. Materials, 2018, 11, 1939.
26 Chen H Q, Tang B M, Hao P W. Journal of Chongqing University, 2013, 36(3), 53(in Chinese).
陈辉强, 唐伯明, 郝培文. 重庆大学学报, 2013, 36(3), 53.
27 Chen H Q, Zheng Z N, Guo P, et al. Journal of Building Materials, 2017, 20(4), 635(in Chinese).
陈辉强, 郑智能, 郭鹏, 等. 建筑材料学报, 2017, 20(4), 635.
28 Chen H Q, Hao P W. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(3), 136(in Chinese).
陈辉强, 郝培文. 土木建筑与环境工程, 2009, 31(3), 136.
29 Sheng Y P, Wu Y C, Yan Y, et al. Journal of Cleaner Production. 2020, 257, 120487.
30 Ma Y Y, Ma P F, Ma Y J, et al. Journal of Applied Polymer Science, 2017, 134.
31 Lu L G, Chen Y H, Zhao J, et al. Acta Materiae Compositae Sinica, 2015, 32(1), 101(in Chinese).
卢林刚, 陈英辉, 赵瑾, 等. 复合材料学报, 2015, 32(1), 101.
32 Yuan P, Tan D Y, FaÏza A. Applied Clay Science, 2015, 112-113, 75.
33 Fan L D, Zhang B B, He C F, et al. Materials Reports A:Review Papers, 2016, 30(2), 96(in Chinese).
范利丹, 张冰冰, 贺超峰, 等.材料导报:综述篇, 2016, 30(2), 96.
34 Dong Y M, Zhao D, Zong Z, et al. Polymer Materials Science and Engineering. 2020, 36(1), 75(in Chinese).
董延茂, 赵丹, 宗泽, 等. 高分子材料科学与工程, 2020, 36(1), 75.
35 Liu L, Han S J, Zhan S, et al. Acta Materiae Compositae Sinica. 2020, 37(10), 2386(in Chinese).
刘丽, 韩思杰, 张松, 等. 复合材料学报, 2020, 37(10), 2386.
[1] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[2] 康兴隆, 鲁哲宏, 柳妍, 冯伟丽, 刘保英, 房晓敏, 丁涛. 改性纳米二氧化硅协效二乙基次磷酸铝阻燃尼龙6[J]. 材料导报, 2021, 35(18): 18047-18051.
[3] 唐启恒, 郭文静. 三聚氰胺聚磷酸盐/次磷酸铝对高密度纤维板阻燃和力学性能的影响[J]. 材料导报, 2021, 35(16): 16166-16171.
[4] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[5] 冯伟丽, 康兴隆, 柳妍, 鲁哲宏, 刘保英, 房晓敏, 丁涛. 层层自组装改性剑麻纤维填充聚丙烯复合材料性能研究[J]. 材料导报, 2021, 35(10): 10211-10215.
[6] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[7] 何亮, 李冠男, 郑雨丰, Alessio Alexiadis, Jan Valentin, Karol J Kowalski. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093.
[8] 王珊珊, 赵磊, 周海瑛, 李文珠, 张文标. 次磷酸铝对竹炭/聚乳酸复合材料阻燃和力学性能的影响[J]. 材料导报, 2020, 34(14): 14214-14217.
[9] 周颖, 张道海, 秦舒浩. DOPO衍生物的合成与阻燃应用研究现状[J]. 材料导报, 2019, 33(5): 901-906.
[10] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[11] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[12] 肖俊华, 左迎峰, 吴义强, 刘文杰, 吴志平, 孟陶陶. 硅丙乳液对镁系无机胶黏剂性能和微结构的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 49-54.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed