Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16166-16171    https://doi.org/10.11896/cldb.20030040
  高分子与聚合物基复合材料 |
三聚氰胺聚磷酸盐/次磷酸铝对高密度纤维板阻燃和力学性能的影响
唐启恒1,2, 郭文静1,2
1 中国林业科学研究院林业新技术研究所,北京 100091;
2 中国林业科学研究院木材工业研究所,北京 100091
Effect of the Melamine Polyphosphate and Aluminum Hypophosphite on the Mechanical and Flame-retardant Properties of High Density Fiberboard
TANG Qiheng1,2, GUO Wenjing1,2
1 Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing l00091, China;
2 Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
下载:  全 文 ( PDF ) ( 5914KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用人造板热压工艺技术,将三聚氰胺聚磷酸盐(MPP)和次磷酸铝(AHP)作为阻燃剂引入高密度纤维板(HDF)中,制备MPP/AHP-HDF复合材料。采用弯曲强度、冲击强度、极限氧指数(LOI)、锥形量热仪等来评价阻燃剂对复合材料性能的影响。研究结果表明:随着阻燃剂添加量的增加,复合材料的弯曲强度、冲击强度明显下降,通过复合材料断面形貌可以看出阻燃剂与基体间界面粘接较差,界面应力传递效率低,故而阻燃剂的引入导致复合材料力学性能下降。随着阻燃剂添加量的增加,复合材料的LOI逐步增大,当阻燃剂添加量达到15%时,复合材料的LOI达到40%,而热释放速率峰值和总的热释放量呈下降趋势,这是因为MPP和AHP在燃烧过程中可以有效促进裂解产物成炭,而且MPP还产生很多不燃气体,进而稀释了可燃性气体的浓度,从而提高复合材料的阻燃性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐启恒
郭文静
关键词:  纤维板  三聚氰胺聚磷酸盐(MPP)  次磷酸铝(AHP)  力学性能  阻燃性能    
Abstract: Melamine polyphosphate (MPP) and aluminum hypophosphite (AHP) flame retardants were introduced into high density fiberboard (HDF) to prepare MPP/AHP-HDF composites by hot pressing technology of wood-based panels. The effects of flame retardants on the properties of composites were investigated by bending strength, impact strength, limiting oxygen index and cone calorimetry test. The results showed that the flexural strength and impact strength of the composites decreased obviously with increasing the flame retardant content. According to SEM characterization, it can be found that the poor compatibility between the flame retardant and matrix was observed. Furthermore, the stress wasn't able to transfer effectively within the material, leading to the inferior mechanical properties. The flame retardancy of the composites was investigated by limiting oxygen index (LOI), and the flame retardant mechanism was also analyzed. The results showed that with the increase of flame retardant, the LOI values of the composites increased gradually with increasing the flame retardant contents. The LOI value of the composites reached 40% when the content of flame retardant reached 15%, meanwhile, the peak value of heat release and total heat release had a downward tendency. This was because MPP and AHP could promote effectively the char formation during the combustion process. Moreover, MPP could produce a lot of non-combustible gases which diluted the amount concentration of combustible gases. All these effects could improve the flame retardant properties of the composites.
Key words:  fiberboards    melamine polyphosphate (MPP)    aluminium hypophosphite (AHP)    mechanical properties    flame retardancy
                    发布日期:  2021-09-07
ZTFLH:  TB332  
  TQ323.4  
基金资助: 中央级公益性科研院所基本科研业务费专项资金(CAFYBB2018SZ014;CAFYBB2018GD002-02)
通讯作者:  Guowj@caf.ac.cn   
作者简介:  唐启恒,2015年3月毕业于北京理工大学,获得材料科学与工程博士学位。同年加入中国林业科学研究院木材工业研究所工作至今,主要从事透明木材材料和超高强度木基复合材料的研究。
郭文静,中国林业科学研究院木材工业研究所,研究员,复合工程与结构材料研究室主任。博士毕业于中国林业科学研究院木材工业研究所,木基复合材料专业。主要从事环境友好复合材料、木纤维模压汽车复合材料和高强度木基复合材料的研究。
引用本文:    
唐启恒, 郭文静. 三聚氰胺聚磷酸盐/次磷酸铝对高密度纤维板阻燃和力学性能的影响[J]. 材料导报, 2021, 35(16): 16166-16171.
TANG Qiheng, GUO Wenjing. Effect of the Melamine Polyphosphate and Aluminum Hypophosphite on the Mechanical and Flame-retardant Properties of High Density Fiberboard. Materials Reports, 2021, 35(16): 16166-16171.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030040  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16166
1 Serrano S, Barreneche C, Navarro A, et al. Energy and Buildings, 2016, 127(1), 1.
2 Ji L, Chen Z L, Fu F. Fire Science and Technology, 2010, 29(4), 279(in Chinese).
纪磊, 陈志林, 傅峰.消防科学与技术, 2010, 29(4), 279.
3 Xu G Z, Chen X S, Zhang S, et al. Acta Metallurgica Sinica, 2012, 29(1), 62(in Chinese).
许国志, 陈小随, 张胜, 等.复合材料学报, 2012, 29(1), 62.
4 Tang Q H, Tan H W, Wei Q F, et al. Journal of Forestry Engineering, 2019, 4(2), 26(in Chinese).
唐启恒,谭宏伟,韦淇峰, 等.林业工程学报, 2019, 4(2), 26.
5 Tang Q H, Chang L, Wang S Y, et al. China Wood Industry, 2019, 33(3), 49(in Chinese).
唐启恒, 常亮, 王双永, 等.木材工业, 2019, 33(3), 49.
6 Yang Y C, Hou L D.Journal of Fujian College of Forestry, 2002, 22(4), 353(in Chinese).
杨远才, 侯伦灯.福建林学院学报, 2002, 22(4), 353.
7 Guo M H, Wang Y, Fu J L.Journal of Building Materials, 2011, 14(5), 649(in Chinese).
郭明辉, 王勇, 付继磊.建筑材料学报, 2011, 14(5), 649.
8 Wei S Y, Cui T H, Fu X X, et al. China Forest Products Industry, 2018, 45(2), 12(in Chinese).
魏松艳, 崔铁花, 付晓霞, 等.林产工业, 2018, 45(2), 12.
9 Kong L, Tu K, Guan H, et al. Applied Surface Science, 2017, 407, 479.
10 Guo B, Liu Y, Zhang Q, et al. ACS Applied Material Interfaces, 2017, 9, 23039.
11 Wang Z, Yan Y, Shen X, et al. Polymers, 2018, 10, 341.
12 Wang X, Kalali E N, Wan J T, et al. Progress in Polymer Science, 2017, 69, 22.
13 Chen W, Zhao F, Guo Z L, et al.Polymer Materials Science & Enginee-ring, 2017, 33(3), 111(in Chinese).
陈婉, 赵凡, 郭知理, 等.高分子材料科学与工程, 2017, 33(3), 111.
14 Guan Y H, Wang X L, Deng C, et al. Chemical Research and Application, 2019, 31(1), 87(in Chinese).
关雅慧, 汪秀丽, 邓聪, 等.化学研究与应用, 2019, 31(1), 87.
15 Zhang L F, Liang S Q, Zhang L F, et al. China Wood Industry, 2018, 32(1), 5(in Chinese).
张丽芳, 梁善庆, 张龙飞, 等.木材工业, 2018, 32(1), 5.
16 Guo W, Li L P.New Chemical Materials, 2016, 4(2), 105(in Chinese).
果威,李丽萍.化工新型材料, 2016, 4(2), 105.
17 Kim U J, Eom S H, Wada M. Polymer Degradation and Stability, 2010, 95, 778.
18 Gao L, Tang Q H, Chen Y P, et al. Polymer Composites, 2018, 39(6), 1809.
19 Zhang K B, Hong Y B, Wang N G, et al. Journal of Applied Polymer Science, 2018, 135(5), 45779.
20 Qi Y X, Wu W H, Liu X W, et al. Fire and Materials, 2017, 41(3), 195.
21 Nguyen T, Hoang D, Kim J.Macromolecular Research, 2017, 26(1), 1.
22 Tang Q H, Ren Y P, Wang G, et al. Acta Materiae Compositae Sinica, 2020, 37(3), 553(in Chinese).
唐启恒, 任一萍, 王戈, 等. 复合材料学报, 2020, 37(3), 553.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed