Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22040120-9    https://doi.org/10.11896/cldb.22040120
  无机非金属及其复合材料 |
基于机械活化法制备高强韧高柔性建筑陶瓷
聂光临1,2,*, 刘一军1,*, 汪庆刚1, 黄玲艳1, 吴洋1, 潘利敏1, 包亦望3, 饶平根2
1 蒙娜丽莎集团股份有限公司博士后科研工作站,广东 佛山 528211
2 华南理工大学材料科学与工程学院,广州 510641
3 中国建筑材料科学研究总院有限公司绿色建筑材料国家重点实验室,北京 100024
Preparation of Building Ceramics with High Strength-Toughness and High Flexibility by a Mechanical Activation Method
NIE Guanglin1,2,*, LIU Yijun1,*, WANG Qinggang1, HUANG Lingyan1, WU Yang1, PAN Limin1, BAO Yiwang3, RAO Pinggen2
1 Postdoctoral Research Center, Monalisa Group Co., Ltd., Foshan 528211, Guangdong, China
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
3 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
下载:  全 文 ( PDF ) ( 25332KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为实现建筑陶瓷力学性能的大幅度提升,采用机械活化法(MA)对建筑陶瓷粉体进行预处理,探究了MA处理时间对建筑陶瓷粉体、生坯、烧结体性能的影响规律;并基于陶瓷试样物相组成与微观结构分析,阐释了MA的强韧化机制。结果表明:MA可降低陶瓷粉体粒径、增强烧结活性,并提升陶瓷生坯的致密化进程,而且有利于提升建筑陶瓷的致密度,降低陶瓷中气孔缺陷数量与尺寸,继而实现了陶瓷的致密化强化;此外,MA还可以细化与均匀化刚玉和石英相颗粒,促进石英在液相中的熔解,提升玻璃相基体中SiO2含量,增大莫来石相的结晶度与长径比及陶瓷断面的粗糙度与裂纹扩展路径,继而可提升弥散增强、基体强化、莫来石强化效果与裂纹偏转增韧效果,有利于实现建筑陶瓷的强韧化。随着MA处理时间的延长,建筑陶瓷的力学强度、韧性与柔性均逐渐增强,MA处理40 min制得的陶瓷试样的弯曲强度((88.2±6.3) MPa)、断裂功((390.5±44.2) J/m2)与极限应变((10.24±0.48)×10-4)分别较未经MA处理制得的试样提升了52.8%、112.6%、39.1%,表明MA是一种有效的建筑陶瓷强韧化和柔化方法。此外,该方法操作简单,在高强韧建筑陶瓷板材制备领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂光临
刘一军
汪庆刚
黄玲艳
吴洋
潘利敏
包亦望
饶平根
关键词:  机械活化法  建筑陶瓷  弯曲强度  断裂功  强韧化  物相组成  微观结构    
Abstract: In order to greatly enhance the mechanical properties of the building ceramic, a mechanical activation method (MA) was used to pretreat the building ceramic powder, and the effects of MA time on the properties of building ceramic powder, green and sintered bodies were investigated. The strengthening-toughening mechanisms of building ceramics after the MA treatment were also demonstrated based on the phase composition and microstructure analyses. The results indicate that MA can be adopted to reduce the particle size of ceramic powder, enhance the sinte-rability and promote the densification process of ceramic green body, which are conductive to improving the relative density of building ceramic and reducing the number and size of pore flaws in ceramic, resulting in the high densification strengthening for the ceramics. Besides, the MA is favorable for refining and homogenizing the corundum and quartz particles, promoting the dissolution of quartz into the liquid phase and boosting SiO2 content in the glass phase matrix, improving the crystallinity and aspect ratio of the mullite phase, and enlarging the facture surface roughness and the crack propagation path in ceramic, thus resulting in the enhanced dispersion strengthening, matrix reinforcing, mullite strengthening and the crack deflection toughening effects. Afterwards, the building ceramic can be effectively strengthened and toughened. The mechanical strength, toughness and flexibility of building ceramic samples were enhanced gradually with the increase of MA time. The flexural strength ((88.2±6.3) MPa), fracture energy ((390.5±44.2) J/m2) and failure strain ((10.24±0.48)×10-4) of the ceramic sample prepared with MA treatment for 40 min were 52.8%, 112.6% and 39.1% higher than those of the sample prepared without MA treatment, respectively, indicating that MA is an effective way to strengthen-toughen the building ceramics and to enhance their flexibility. Moreover, this method is simple in operation and has substantial prospects in the preparation of building ceramic slabs with high strength and toughness.
Key words:  mechanical activation method    building ceramic    flexural strength    fracture energy    strengthen-toughen    phase composition    microstructure
发布日期:  2023-12-19
ZTFLH:  TU523  
基金资助: 蒙娜丽莎集团股份有限公司博士后科研工作站资助项目;广东省基础与应用基础研究基金(2023A1515012676)
通讯作者:  *聂光临,2012年6月和2015年6月分别于济南大学和北京工业大学获得工学学士、硕士学位,2018年7月毕业于中国建筑材料科学研究总院,获得材料学博士学位,并获得北京市普通高等学校优秀毕业生荣誉称号。2018年9月至2021年9月在广东工业大学完成第一站博士后研究工作,随后(2021年10月)进入蒙娜丽莎集团股份有限公司和华南理工大学材料科学与工程学院继续开展博士后研究工作,主要从事建筑陶瓷强韧化与深加工技术的研究。目前,已发表20余篇论文,其中SCI/EI检索论文16篇;申请10余项国家发明专利;主持2项省部级科研项目;先后获得省部级科技奖励3项。
刘一军,教授级高级工程师、硕士研究生导师。1994年7月毕业于西北轻工业学院,获工学学士学位;2011年12月毕业于陕西科技大学,获工学博士学位。现任蒙娜丽莎集团股份有限公司生产技术副总裁、国家企业技术中心副主任、广东省工程技术中心主任、广东省重点实验室主任。主要从事建筑陶瓷基础理论与应用技术研究,先后主持/参与完成了国家火炬计划项目、国家发改委资源节约和环境保护项目、广东省产业结构调整项目、国家“十一五”科技支撑计划等多项科研攻关项目。目前获得授权发明专利78件(PCT授权4件),获中国专利优秀奖2项,广东省专利优秀奖2项,省市区各类科技进步奖14项。主编/参编国家及行业标准5项,发表学术论文30余篇。享受国务院特殊津贴,先后获广东省杰出发明人、全国劳动模范等荣誉称号。buildingmaterials8@163.com;235036388@qq.com   
引用本文:    
聂光临, 刘一军, 汪庆刚, 黄玲艳, 吴洋, 潘利敏, 包亦望, 饶平根. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 22040120-9.
NIE Guanglin, LIU Yijun, WANG Qinggang, HUANG Lingyan, WU Yang, PAN Limin, BAO Yiwang, RAO Pinggen. Preparation of Building Ceramics with High Strength-Toughness and High Flexibility by a Mechanical Activation Method. Materials Reports, 2023, 37(24): 22040120-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040120  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22040120
1 GB/T 9195-2011, Classification and terms of building and sanitary ceramics, Standards Press of China, China, 2011 (in Chinese).
GB/T 9195-2011, 建筑卫生陶瓷分类及术语, 中国标准出版社, 2011.
2 Huang H N, Ke S J. China Ceramic Industry, 2013, 20(2), 24 (in Chinese).
黄惠宁, 柯善军. 中国陶瓷工业, 2013, 20(2), 24.
3 Carty W M, Senapati U. Journal of the American Ceramic Society, 1998, 81(1), 3.
4 Martín-Márquez J, Rincón J M, Romero M. Journal of the European Ceramic Society, 2010, 30(15), 3063.
5 Zhang D, Liu Y J, Tong J F, et al. Journal of Building Materials, 2018, 21(1), 174 (in Chinese).
张电, 刘一军, 同继锋, 等. 建筑材料学报, 2018, 21(1), 174.
6 Bragança S R, Bergmann C P, Hübner H. Journal of the European Ceramic Society, 2006, 26(16), 3761.
7 Bragança S R, Bergmann C P. Materials Science Forum, 2006, 530, 493.
8 Correia S L, Oliveria A P N, Hotza D, et al. Journal of the American Ceramic Society, 2006, 89(11), 3356.
9 Ma T C, Miao S L, Lin S X, et al. Ceramic Technology (2nd edition), China Light Industry Press, China, 2021, pp. 17 (in Chinese).
马铁成, 缪松兰, 林绍贤, 等. 陶瓷工艺学(第二版), 中国轻工业出版社, 2021, pp. 17.
10 Zhou J E, Ma Y Q, Wang J, et al. Journal of Ceramics, 2006, 27(3), 243 (in Chinese).
周健儿, 马玉琦, 王娟, 等. 陶瓷学报, 2006, 27(3), 243.
11 Liu Y J, Wang X F, Huang J F. Foshan Ceramics, 2010, 20(5), 11 (in Chinese).
刘一军, 王秀峰, 黄剑锋. 佛山陶瓷, 2010, 20(5), 11.
12 Sánchez E, Ibáñez M J, García-Ten J, et al. Journal of the European Ceramic Society, 2006, 26(13), 2533.
13 Ochen W, D’ujanga F M, Oruru B. Advances in Materials, 2019, 8(1), 33.
14 Dowuona A N N, Yaya A, Nyankson E, et al. Journal of Ceramic Processing Research, 2018, 19, 1.
15 Taskiran M U, Demirkol N, Capoglu A. Ceramics International, 2006, 32(3), 325.
16 Zhang C Y. Studies on activation mechanism of silicate by composite organic acids and its application in ceramics manufacture. Ph. D. Thesis, South China University of Technology, China, 2018 (in Chinese).
张晨阳. 混合有机酸高效活化硅酸盐矿物机制及其在陶瓷生产中的应用基础研究. 博士学位论文, 华南理工大学, 2018.
17 Luo Y, Ma S, Liu C, et al. Journal of the European Ceramic Society, 2017, 37(4), 1847.
18 Yi L N. The mechanism and application of K-feldspar activated by organic acids. Master’s Thesis, South China University of Technology, China, 2015 (in Chinese).
易玲娜. 有机酸活化钾长石的机制及其应用研究. 硕士学位论文, 华南理工大学, 2015.
19 GB/T 3810. 3-2016, Test methods of ceramic tiles-Part 3:Determination of water absorption, apparent porosity, apparent relative density and bulk density, Standards Press of China, China, 2016 (in Chinese).
GB/T 3810. 3-2016, 陶瓷砖试验方法 第3部分:吸水率、显气孔率、表观相对密度和容重的测定, 中国标准出版社, 2016.
20 Zhang D. Research of high-strength ceramic plate. Master’s Thesis, Wuhan University of Technology, China, 2015 (in Chinese).
张电. 高强陶瓷薄板的研究. 硕士学位论文, 武汉理工大学, 2015.
21 GB/T 3810. 4-2016, Test methods of ceramic tiles-Part 4:Determination of modulus of rupture and breaking strength, Standards Press of China, China, 2016 (in Chinese).
GB/T 3810. 4-2016, 陶瓷砖试验方法 第4部分:断裂模数和破坏强度的测定, 中国标准出版社, 2016.
22 GB/T 10700-2006, Test methods for elastic moduli of fine ceramics (advanced ceramics, advanced technical ceramics)-Bending method, Stan-dards Press of China, China, 2006 (in Chinese).
GB/T 10700-2006, 精细陶瓷弹性模量试验方法 弯曲法, 中国标准出版社, 2006.
23 Su S B. Pre-stressed ceramics and the stress analysis and design of laminate composite ceramics. Ph. D. Thesis, China Building Materials Aca-demy, China, 2002 (in Chinese).
苏盛彪. 预应力陶瓷与层状陶瓷复合材料应力分析与设计. 博士学位论文, 中国建筑材料科学研究总院, 2002.
24 Zhu H B, Li H, Li Z X. Surface and Coatings Technology, 2013, 235, 620.
25 Li J, Cao X G, Wang Z Y, et al. Journal of Practical Stomatology, 2005, 21(2), 191 (in Chinese).
李江, 曹小刚, 王忠义, 等. 实用口腔医学杂志, 2005, 21(2), 191.
26 Yuan L J, Zhang P J, Zuo F, et al. Journal of the European Ceramic Society, 2021, 41, 706.
27 Moore G S M. Phase Transitions, 1986, 7, 25.
28 Zanelli C, Raimondo M, Dondi M, et al. In:7th World Congress on Ceramic Tile Quality. Castellon, Spain, 2004, pp. 247.
29 GB/T 4100-2015, Ceramic tiles, Standards Press of China, China, 2015 (in Chinese).
GB/T 4100-2015, 陶瓷砖, 中国标准出版社, 2015.
30 GB/T 23266-2009, Ceramic board, Standards Press of China, China, 2009 (in Chinese).
GB/T 23266-2009, 陶瓷板, 中国标准出版社, 2009.
31 Carty W M, Pinto B M. Ceramic Engineering and Science Proceedings, 2002, 23(2), 95.
32 Iqbal Y, Lee W E. Journal of the American Ceramic Society, 2000, 83(12), 3121.
33 Lee W E, Iqbal Y. Journal of the European Ceramic Society, 2001, 21, 2583.
34 Zanelli C, Raimondo M, Guarini G, et al. Journal of Non-Crystalline Solids, 2011, 357, 3251.
35 Bao Y W. Evaluation methods and technologies for the mechanical properties of advanced ceramics, China Building Materials Industry Press, China, 2017, pp. 198(in Chinese).
包亦望. 先进陶瓷力学性能评价方法与技术, 中国建材工业出版社, 2017, pp. 198.
36 Su H Z, Yu Y G, Liu Y J, et al. China Ceramics, 2021, 57(10), 62 (in Chinese).
苏华枝, 余有根, 刘一军, 等. 中国陶瓷, 2021, 57(10), 62.
37 Contreras J E, Taha-Tijerina J, López-Perales J F, et al. Materials Chemistry and Physics, 2021, 263, 124389.
38 Ranachowski P, Rejmund F, Ranachowski Z, et al. Archives of Metallurgy and Materials, 2013, 58(4), 1177.
39 Yu M Q, Fan S G, Shen Q, et al. Key Engineering Materials, 2003, 249, 167.
40 Bao Y W, Liu C C, Huang J L. Materials Science and Engineering A, 2006, 434, 250.
41 Bao Y W, Yang J, Qiu Y, et al. Materials Science and Engineering A, 2009, 512, 45.
42 Amigó J M, Clausell J V, Esteve V, et al. Journal of the European Ceramic Society, 2004, 24(1), 75.
43 Tian Y L, Li J J, Yang B Y, et al. Journal of Yanshan University, 2017, 41(4), 283 (in Chinese).
田英良, 李俊杰, 杨宝瑛, 等. 燕山大学学报, 2017, 41(4), 283.
44 Dai C L, Yang Y, Yang M. Foshan Ceramics, 2010, 20(6), 32 (in Chinese).
戴长禄, 杨勇, 杨明. 佛山陶瓷, 2010, 20(6), 32.
45 Kern F, Gadow R. Journal of the European Ceramic Society, 2012, 32(15), 3911.
46 Boccaccini A R, Winkler V. Composites Part A: Applied Science and Manufacturing, 2002, 33(1), 125.
47 Maiti K, Sil A. Ceramics International, 2010, 36(8), 2337.
48 Yang M M, Luo X D, Xie Z P, et al. Journal of Ceramics, 2019, 40(2), 181 (in Chinese).
杨孟孟, 罗旭东, 谢志鹏, 等. 陶瓷学报, 2019, 40(2), 181.
[1] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[4] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[5] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[6] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[7] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[8] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[9] 陈强, 张而耕, 梁丹丹, 周琼, 黄彪, 韩生. nc-Ti(C,N)/a-C复合涂层的微观结构和性能[J]. 材料导报, 2023, 37(22): 22080131-7.
[10] 何松松, 焦楚杰, 欧旭. 高强抗冻透水混凝土的配合比设计与性能评估[J]. 材料导报, 2023, 37(21): 23070257-7.
[11] 黄留飞, 孙耀宁. 高强韧高熵合金的变形行为研究进展[J]. 材料导报, 2023, 37(20): 22030168-10.
[12] 朱倍, 徐迅, 胡海龙, 余波, 朱妍, 甘露. 基于改性剂调控517相改善碱式硫酸镁水泥耐水性能[J]. 材料导报, 2023, 37(19): 22050264-6.
[13] 袁钰轩, 马爱斌, 吴浩然, 江静华. 异构金属材料优异力学性能及其机理的研究进展[J]. 材料导报, 2023, 37(18): 21080078-7.
[14] 聂光临, 刘一军, 汪庆刚, 程科木, 吴洋, 黄玲艳, 潘利敏, 包亦望, 饶平根. 片状Al2O3增强建筑陶瓷板材的制备与性能研究[J]. 材料导报, 2023, 37(16): 22020046-7.
[15] 朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed