Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030168-10    https://doi.org/10.11896/cldb.22030168
  金属与金属基复合材料 |
高强韧高熵合金的变形行为研究进展
黄留飞, 孙耀宁*
新疆大学机械工程学院,乌鲁木齐 830017
Deformation Behavior of High Strength-Toughness High-entropy Alloys:a Review
HUANG Liufei, SUN Yaoning*
School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
下载:  全 文 ( PDF ) ( 43748KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金的提出为传统合金领域的发展开辟了一条新的途径。基于独特的合金设计理念实现多原子化学长程无序的简单晶体结构,从而使高熵合金具有显著的物化性能。通常,金属结构材料的强硬度和塑韧性是一个此消彼长的关系,“强”和“韧”不能协同的问题是阻碍金属材料无法应用严苛使役环境的重要因素,也是限制传统金属材料发展的瓶颈问题。近几年来,高熵合金的强韧化研究取得了重要进展,并陆续报道出了几类具有不同微观结构及变形行为的高强韧高熵合金。本文综述了几类高强韧高熵合金的微观结构、力学性能与变形机制,讨论了高强韧高熵合金软硬相交互作用、纳米沉淀粒子、异质结构以及化学“序”与变形行为之间的关系,展望了高强韧高熵合金未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄留飞
孙耀宁
关键词:  高熵合金  微观结构  力学性能  变形行为    
Abstract: High-entropy alloys have been proposed opening up a new way for the development of traditional alloys field. A polyatomic chemical long-range disorder of the simple crystal structure based on the unique alloy design concept is realized, rendering the high-entropy alloys have remarkable physicochemical properties. Usually, the strength and plasticity of metal structural materials are the trade-off relationship. The problem of strength and toughness that cannot be synergistic is an important factor that impedes the utilization of metal materials in harsh service environments, and also restricts a bottle-neck for the development of traditional metal materials. In recent years, important progress has been made in the study of strengthening-toughening of high-entropy alloys, and several kinds of high strength-toughness high-entropy alloys with different microstructure and deformation behavior have been reported. In this paper, the microstructure, mechanical properties, and deformation mechanism of several kinds of high strength-toughness high-entropy alloys are reviewed. The relationships among soft-hard phase interaction, nano-precipitated particles, heterostructure, chemical ‘order’, and deformation behavior of high-entropy alloys are discussed. Moreover, the future development trend of high strength-toughness high-entropy alloys have prospected.
Key words:  high-entropy alloys    microstructure    mechanical property    deformation behavior
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TG135  
基金资助: 新疆维吾尔自治区自然科学基金(2020D01C030)
通讯作者:  *孙耀宁,新疆大学机械工程学院教授、博士研究生导师。2000年7月于西安理工大学获得学士学位;2005年7月于兰州理工大学获得硕士学位;2008年7月于兰州理工大学获得博士学位。中国机械工程学会表面工程学会委员,新疆机械工程学会铸造专委会秘书长。目前主要从事表面工程技术、复合材料、先进制造技术等方面的研究工作。发表论文50余篇,出版教材1部,获自治区教学成果奖1项。xj_syn@126.com   
作者简介:  黄留飞,2018年7月、2021年7月分别于河南工业大学和新疆大学获得工学学士学位和硕士学位。现为新疆大学机械工程学院博士研究生,在孙耀宁教授的指导下进行研究。目前主要研究领域为高强韧高熵合金的激光增材制造及机械性能研究。
引用本文:    
黄留飞, 孙耀宁. 高强韧高熵合金的变形行为研究进展[J]. 材料导报, 2023, 37(20): 22030168-10.
HUANG Liufei, SUN Yaoning. Deformation Behavior of High Strength-Toughness High-entropy Alloys:a Review. Materials Reports, 2023, 37(20): 22030168-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030168  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030168
1 Liu D, Jin X, Guo N, et al. Materials Science and Engineering A, 2021, 818, 141386.
2 Qi Y M, Xu H M, He T W, et al. Materials Science and Engineering A, 2021, 814, 141196.
3 Lv Z P, Lei Z F, Huang H L, et al. Acta Metallurgica Sinica, 2018, 54(11), 1553(in Chinese).
吕昭平, 雷智锋, 黄海龙, 等. 金属学报, 2018, 54(11), 1553.
4 Wang Q N, Lu Y P, Yu Q, et al. Scientific Reports, 2018, 8, 14910.
5 Karati A, Guruvidyathri K, Hariharan V S, et al. Scripta Materialia, 2018, 162, 465.
6 Chen S Y, Tong Y, Tseng K K, et al. Scripta Materialia, 2019, 158, 50.
7 Wen C, Mo W W, Tian Y W, et al. Materials Reports, 2021, 35(17), 17081(in Chinese).
文成, 莫湾湾, 田玉琬, 等. 材料导报, 2021, 35(17), 17081.
8 Shi P J, Ren W L, Zheng T X, et al. Nature Communications, 2019, 10, 489.
9 Lu Y P, Gao X Z, Jiang L, et al. Acta Materialia, 2017, 124, 143.
10 Liu W H, He J Y, Huang H L, et al. Intermetallics, 2015, 60, 1.
11 Jiang H, Han K M, Qiao D G, et al. Materials Chemistry and Physics, 2018, 210, 43.
12 Wang S, Chen Z, Zhang P K, et al. Vacuum, 163(2019) 263.
13 Liu Y Y, Chen Z, Chen Y Z, et al. Vacuum, 2019, 169, 108837.
14 Tsai M H, Yeh J W. Materials Research Letters, 2014, 2(3), 107.
15 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19, 698.
16 Kao Y F, Lee T D, Chen S K, et al. Corrosion Science, 2010, 52, 1026.
17 Shi Y Z, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33.
18 Kuwabara K, Shiratori H, Fujieda T K, et al. Additive Manufacturing, 2018, 23, 264.
19 Tian Y Q, Yuan Q Y, Fu A Q, et al. Materials Reports, 2021, 35(Z2), 399(in Chinese).
田永强, 苑清英, 付安庆, 等. 材料导报, 2021, 35(Z2), 399.
20 Haghdadi N, Guo T, Ghaderi A, et al. Wear, 2019, 428-429, 293.
21 Chuang M H, Tsai M H, Wang W R, et al. Acta Materialia, 2011, 59(16), 6308.
22 Yang J Y, Ren W J, Zhao X G, et al. Journal of Materials Science & Technology, 2022, 99(10), 55.
23 Zuo T, Gao M C, Ouyang L, et al. Acta Materialia, 2017, 130, 10.
24 George E P, Raabe D, Ritchie R O. Nature Reviews Materials, 2019, 4, 515.
25 Liu L Y, Zhang Y, Han J H, et al. Advanced Science, 2021, 8, 2100870.
26 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
27 Lu Y P, Dong Y, Guo S, et al. Scientific Reports, 2014, 4, 6200.
28 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Research Letters, 2016, 4, 174.
29 Gao X Z, Lu Y P, Zhang B, et al. Acta Materialia, 2017, 141, 59.
30 Xiong T, Zheng S J, Pang J Y, et al. Scripta Materialia, 2020, 186, 336.
31 Wang M L, Lu Y P, Wang T M, et al. Scripta Materialia, 2021, 204, 114132.
32 Jin X, Zhou Y, Zhang L, et al. Materials and Design, 2018, 143, 49.
33 Yang T, Zhao Y L, Tong Y, et al. Science, 2018, 362(6417), 933.
34 Yang T, Zhao Y L, Cao B X, et al. Scripta Materialia, 2020, 183, 39.
35 Li C L, Ma Y, Hao J M, et al. Materials Science and Engineering A, 2018, 737, 286.
36 Ma Y, Wang Q, Jiang B B, et al. Acta Materialia, 2018, 147, 213.
37 Tong Y, Chen D, Han B, et al. Acta Materialia, 2019, 165, 228.
38 He J Y, Wang H, Wu Y, et al. Intermetallics, 2016, 79, 41.
39 Guo L, Gu J, Gong X, et al. Science China Materials, 2020, 63, 288.
40 Gwalani B, Dasari S, Sharma A, et al. Acta Materialia, 2021, 219, 117234.
41 Hadraba H, Chlup Z, Dlouhy A, et al. Materials Science and Enginee-ring A, 2017, 689, 252.
42 Gwalani B, Pohan R M, Waseem O A, et al. Scripta Materialia, 2019, 162, 477.
43 Pan Q S, Zhang L X, Feng R, et al. Science, 2021, 374, 984.
44 An Z B, Mao S C, Liu Y N, et al. Journal of Materials Science & Technology, 2021, 92, 195.
45 Zhang C, Zhu C Y, Cao P H, et al. Acta Materialia, 2020, 199, 602.
46 Wu S W, Wang G, Wang Q, et al. Acta Materialia, 2019, 165, 444.
47 He J Y, Makineni S K, Lu W J, et al. Scripta Materialia, 2020, 175, 1.
48 Ma E, Wu X L. Nature Communications, 2019, 10, 5623.
49 Zhang C, Zhu C Y, Vecchio K. Materials Science and Engineering A, 2018, 743(16), 361.
50 Zhang C, Zhu C Y, Harrington T, et al. Scripta Materialia, 2018, 154, 78.
51 Schön C G. Scripta Materialia, 2021, 196, 113754.
52 Chen S A, Aitken Z H, Pattamatta S, et al. Nature Communications, 2021, 12, 4953.
53 Lei Z F, Liu X J, Wu Y, et al. Nature, 2018, 563, 546.
54 Yin S, Zuo Y X, Odeh A A, et al. Nature Communications, 2021, 12, 4873.
55 Fan L, Yang T, Zhao Y L, et al. Nature Communications, 2020, 11, 6240.
56 Yang T, Zhao Y L, Li W P, et al. Science, 2020, 369(6502), 427.
57 Zhu Y C, Zhou S C, Xiong Z P, et al. Additive Manufacturing, 2021, 39, 101901.
58 Xiong T, Yang W F, Zheng S J, et al. Journal of Materials Science & Technology, 2021, 65, 216.
59 Xiong T. Investigation on the microstructure and properties of eutectic high-entropy alloy AlCoCrFeNi2.1. Ph. D. Thesis, University of Science and Technology of China, China, 2020(in Chinese).
熊婷. 共晶高熵合金AlCoCrFeNi2.1微观结构和性能研究. 博士学位论文, 中国科学技术大学, 2020.
60 Shi P J, Li R G, Li Y, et al. Science, 2021, 373, 912.
61 Huang L F, Sun Y N, Chen N, et al. Materials Science and Engineering A, 2022, 830, 142327.
62 Shi P J, Zhong Y B, Li Y, et al. Materials Today, 2020, 41, 62.
63 Gladman T. Materials Science and Technology, 1999, 15, 30.
64 Gludovatz B, Hohenwarter A, Thurston K V, et al. Nature Communications, 2016, 7, 10602.
65 Kuhlmann-Wilsdorf D. Philosophical Magazine A, 1999, 79(4), 955.
66 Hu X, Jin S, Hao Z, et al. Metallurgical & Materials Transactions A, 2017, 48(9), 1.
67 Wu X, Yang M, Yuan F, et al. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47), 14501.
68 Yang M, Pan Y, Yuan F, et al. Materials Research Letters, 2016, 4, 145.
69 Li G D, Liu M W, Lyu S Y, et al. Scripta Materialia, 2021, 191, 196.
70 Nes E, Marthinsen K, Holmedal B. Materials Science & Technology, 2004, 20(11), 1377.
71 Wu Y, Zhang F, Yuan X Y, et al. Journal of Materials Science & Technology, 2021, 62, 214.
72 Hall E O. Proceedings of the Physical Society Section B, 1951, 643(9), 747.
[1] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[2] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[3] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[4] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[5] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[6] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[7] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[8] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[9] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[10] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[11] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[12] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[13] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[14] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[15] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed