Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030146-12    https://doi.org/10.11896/cldb.22030146
  无机非金属及其复合材料 |
反应等离子喷涂技术研究现状
黄清华1,2, 陈爽1,*, 刘明2,*, 周新远2, 黄艳斐2, 王海斗2,3
1 江西理工大学机电工程学院,江西 赣州 341000
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心 北京 100072
Research Status of Reactive Plasma Spraying Technology
HUANG Qinghua1,2, CHEN Shuang1,*, LIU Ming2,*, ZHOU Xinyuan2, HUANG Yanfei2, WANG Haidou2,3
1 College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 38060KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 反应等离子喷涂技术(RPS)是一种高效且应用广泛的表面处理技术,具有生产效率高、能量利用率高、涂层结合强度大及可喷涂材料广等优点。近年来研究人员主要集中于利用反应等离子喷涂技术制备常规方法难以获得的高熔点、高性能的金属间化合物、陶瓷以及复合涂层,并进行相关的性能测试和质量调控。然而,对喷涂粉末在飞行过程中和到达基体之后的反应放热行为以及反应动力学控制研究尚不深入,并且缺乏对涂层的构筑机理及生长模型的研究。本文从反应等离子喷涂机理、反应过程热力学与动力学分析、反应等离子喷涂粉末制备方法、反应等离子喷涂涂层及其性能和反应等离子喷涂涂层质量调控五个方面,介绍了反应等离子喷涂技术当前的发展概况。其中,在反应等离子喷涂机理方面,阐述了喷涂过程的固/固和固/气反应机理;在反应热力学与动力学分析方面,介绍了反应发生和维持所需要的条件及经典的热力学和动力学计算公式;在反应等离子喷涂粉末制备方法方面,对比了机械混合法、喷雾造粒法、前驱体热解法、包覆法及其他方法的优缺点;在反应等离子喷涂涂层及其性能方面,分别介绍了几种金属间化合物涂层、陶瓷涂层和复合涂层的相关性能;在反应等离子喷涂涂层质量调控方面,综述了工艺参数优化、添加增强颗粒和后处理技术对涂层性能的影响。最后对反应等离子喷涂技术的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄清华
陈爽
刘明
周新远
黄艳斐
王海斗
关键词:  反应等离子喷涂技术  喷涂机理  热力学与动力学分析  质量调控    
Abstract: Reactive plasma spraying (RPS) is an efficient and widely used surface treatment technology, which has the advantages of high production efficiency, high energy utilization, high bonding strength of coating and a wide range of spray materials. In recent years, researchers have focused on the preparation of high melting point and high performance intermetallic compounds, ceramics and composite coatings by reactive plasma spraying, and the related performance testing and quality control. However, the research on the reaction exothermic behavior and reaction kinetic control of sprayed powder during flight and after reaching the substrate is not thorough. Moreover, there is a lack of research on the construction mechanism and growth model of the coating. In this paper, the current development of reactive plasma spraying technology is introduced from five aspects: mechanism of reactive plasma spraying, thermodynamic and kinetic analysis of reaction process, preparation method of reactive plasma spraying powder, reactive plasma spraying coating and its properties, and quality control of reactive plasma spraying coating. Among them, as for the mechanism of reactive plasma spraying, the solid/solid and solid/gas reaction mechanisms of spraying process are described. In the aspect of reaction thermodynamics and kinetics analysis, the conditions that required reaction occurrence, maintenance as well as the classical thermodynamic and kinetics calculation formulas are introduced. In the preparation of reactive plasma spraying powder, the advantages and disadvantages of mechanical mixing, spray drying, precursor pyrolysis, coating and other methods are compared. In the aspects of reactive plasma spraying coating and its properties, the related properties of several intermetallic compound coating, ceramic coating and composite coating are introduced respectively. In terms of quality control of reactive plasma spraying coating, the effects of process parameter optimization, addition of reinforcing particles and post-treatment technology on coating properties are described. Finally, the development trend of reactive plasma spraying technology is prospected.
Key words:  reactive plasma spraying technology    spraying mechanism    thermodynamic and kinetic analysis    quality control
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(52075542;52130509;52105235);十四五预研项目
通讯作者:  *陈爽,江西理工大学机电工程学院副教授。1999年7月本科毕业于南方冶金学院,2008年3月在江西理工大学取得硕士学位。主要研究方向为机器人空间运动与速度规划、智能材料行为及控制,先后主持或参与各类科研项目8项,发表论文与专著10余篇,获得授权专利10余项。chenshuang826@126.com
刘明,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2001年7月本科毕业于陆军装甲兵学院,2018年12月在陆军装甲兵学院装备保障与再制造系取得博士学位。长期从事表面涂层、等离子喷涂方面的研究工作,先后主持或参与国家级及军队级科研项目10余项,其中主持装发预研重点基金项目1项、武器装备预研基金项目2项,获军队科技进步二等奖2项。授权国家(国防)发明专利20余项,发表论文40余篇。hzaam@163.com   
作者简介:  黄清华,2020年6月毕业于九江学院,获得工学学士学位。现为江西理工大学机电工程学院硕士研究生,在陈爽副教授与刘明助理研究员的指导下进行研究。目前主要研究领域为等离子喷涂技术。
引用本文:    
黄清华, 陈爽, 刘明, 周新远, 黄艳斐, 王海斗. 反应等离子喷涂技术研究现状[J]. 材料导报, 2023, 37(20): 22030146-12.
HUANG Qinghua, CHEN Shuang, LIU Ming, ZHOU Xinyuan, HUANG Yanfei, WANG Haidou. Research Status of Reactive Plasma Spraying Technology. Materials Reports, 2023, 37(20): 22030146-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030146  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030146
1 Xu J Y, Wu Q D, Wei X L, et al. Meterials Reports, 2020, 34(13), 13155(in Chinese).
徐金勇, 吴庆丹, 魏新龙, 等. 材料导报, 2020, 34(13), 13155.
2 Tang L, He P F, Ma G Z, et al. Surface Technology, 2019, 48(8), 185(in Chinese).
唐令, 何鹏飞, 马国政, 等. 表面技术, 2019, 48(8), 185.
3 Zhao Y X, Wang S G, Ye Q F, et al. Surface Technology, 2018, 47(1), 21(in Chinese).
赵雅萱, 王少刚, 叶庆丰, 等. 表面技术, 2018, 47(1), 21.
4 Ji M M, Zhu S Z, Ma Z. Surface Technology, 2021, 50(1), 253(in Chinese).
姬梅梅, 朱时珍, 马壮. 表面技术, 2021, 50(1), 253.
5 Wei S M, Ma P, Ji P C, et al. Journal of Meterias Engineering, 2021, 49(10), 1(in Chinese).
魏水淼, 马盼, 季鹏程, 等. 材料工程, 2021, 49(10), 1.
6 He P F, Wang H D, Chen S Y, et al. Journal of Alloys and Compounds, 2020, 819, 153009.
7 Ghorbantabar O J, Shafiee A M, Sharifitabar M. Ceramics International, 2018, 44(16), 20115.
8 Tri-Widodo-Besar R, Zhang T, Marchant D, et al. Journal of Alloys and Compounds, 2019, 805, 104.
9 Gao H D, Wang Z H, Shao J. Surface Technology, 2016, 45(4), 31(in Chinese).
高海东, 王泽华, 邵佳. 表面技术, 2016, 45(4), 31.
10 He N N, Hou C X, Shu X Y, et al. Meterials Reports, 2018, 32(3), 510(in Chinese).
何宁宁, 侯晨曦, 舒小艳, 等. 材料导报, 2018, 32(3), 510.
11 Xia M, Wang Z H, Bai F, et al. Surface Technology, 2015, 44(8), 1(in Chinese).
夏铭, 王泽华, 柏芳, 等. 表面技术, 2015, 44(8), 1.
12 Yao Y H, Wang Z H, Zhou Z H, et al. Meterials of Mechnical Enginee-ring, 2011, 35(12), 1(in Chinese).
姚燚红, 王泽华, 周泽华, 等. 机械工程材料, 2011, 35(12), 1.
13 Lin Z, He J, Yan D, et al. Applied Surface Science, 2011, 257(23), 10282.
14 He J, Zhang F Y, Mi P B, et al. Surface and Coatings Technology, 2016, 305, 215.
15 Zhang F H, Li C, Yan S, et al. Ceramics International, 2021, 47(3), 3173.
16 Liu H Y, Huang J H, Yin C F, et al. Ceramics International, 2007, 33(5), 827.
17 Sun X, Huang J H, Yang J, et al. Ceramics International, 2019, 45(5), 5848.
18 Zhou X P, Wang X J, Zhu L K. Surface Technology. 2014, 43(4), 6(in Chinese).
周小平, 王小军, 朱理奎. 表面技术, 2014, 43(4), 6.
19 He P F, Tang L, Ma G Z, et al. Applied Surface Science, 2020, 530, 147246.
20 Yang Y, Yan D R, Dong Y C, et al. Tansactions of Meterials and Heat Treatment, 2011, 32(S1), 136(in Chinese).
杨勇, 阎殿然, 董艳春, 等. 材料热处理学报, 2011, 32(S1), 136.
21 Motohiro Y, Toshiaki Y, Mohammed S. Journal of Thermal Spray Technology, 2010, 19(3), 635.
22 Motohiro Y, Toshiaki Y, Mohammed S. Materials Transactions, 2013, 54(2), 207.
23 Galliano F, Galvanetto F E. Thin Solid Films, 2001, 384(2), 223.
24 Yao H Y, Wang Y Z, Wang H F, et al. China Surface Engineering, 2005, 18(3), 41(in Chinese).
姚海玉, 王引真, 王海芳, 等. 中国表面工程, 2005, 18(3), 41.
25 Yin S. Combustion synthesis, Metallurgical Industry Press, China, 1999, pp. 56(in Chinese).
殷声. 燃烧合成, 冶金工业出版社, 1999, pp. 56.
26 Liu C S, Li Z W, Huang J H, et al. The Chinese Journal of Nonferrous Metals, 2006(9), 1522(in Chinese).
刘长松, 李志文, 黄继华, 等. 中国有色金属学报, 2006(9), 1522.
27 Zhang P L. Self-propagating high-temperature synthsis with magnesiothermit reactions and stuctural macrokenitics research of TiB2 and ZrB2 ceramic. Master’s Thesis, Lanzhou University of Technology, China, 2008(in Chinese).
张鹏林. 镁热剂反应自蔓延高温合成TiB2和ZrB2陶瓷及其结构宏观动力学研究. 硕士学位论文, 兰州理工大学, 2008.
28 Jiao Y. Study on in-situ synthesis TiC/FeAl coating by laser cladding. Master’s Thesis, East China Jiaotong University, China, 2014(in Chinese).
焦宇. 激光熔覆原位合成TiC/FeAl复合涂层研究. 硕士学位论文 华东交通大学, 2014.
29 Li R H, Lv Y L, Xue M M, et al. Surface and Coatings Technology, 2020, 391, 125658.
30 Lv Y L, Chi Y L, Mao X Y, et al. Ceramics International, 2021, 47(8), 11320.
31 Shen J G, Zou B L, Cai X L, et al. Surface and Coatings Technology, 2019, 378, 125055.
32 Li C, Zhang F Y, He J N, et al. Materials Chemistry and Physics, 2020, 254, 123495.
33 Yan D R, Yang Y, Chu Z H, et al. Surface and Coatings Technology, 2017, 328, 94.
34 Yang Y, Yan D R, Dong Y C, et al. Journal of Thermal Spray Technology, 2013, 22(6), 1002.
35 Sun X, Li W, Huang J H, et al. Ceramics International, 2021, 47(17), 24438.
36 Liu H Y, Huang J H, Yin C F, et al. Ceramics international, 2007, 33(5), 827.
37 Zhu J L, Huang J H, Wang H T, et al. Applied Surface Science, 2008, 254(20), 6687.
38 Zhang C, Xu P, Wang W. Materials and Design, 2015, 35, 293.
39 Du L Z, Zhang W G, Huang C B. Journal of Thermal Spray Technology, 2014, 23(3), 463.
40 Enayati M H, Jafari M M. Materials Science & Engineering A, 2013, 46, 348.
41 Tian J J, Yao S W, Luo X T, et al. Acta Materialia, 2016, 110, 19.
42 Abu-warda N, López A J, López M D, et al. Surface and Coatings Technology, 2019, 359, 35.
43 Poblano-salas C A, Cabral-miramontes J A, Gallegos-Melgar A, et al. International Journal of Refractory Metals and Hard Materials, 2015, 48, 167.
44 Mao Z P, Ma J, Wang J, et al. Journal of Materials Science, 2009, 44(12), 3265.
45 Horlock A J, Sadeghian Z, McCartney D G, et al. Journal of Thermal Spray Technology, 2005, 14(1), 77.
46 Cagri T, Yamazaki M, Tsunekawa Y, et al. Surface and Coatings Technology, 2008, 202(17), 4163.
47 Wang W M, Du L Z, Zhang W G, et al. Rare Metal Materials and Engineering, 2011, 40(3), 555(in Chinese).
王文明, 杜令忠, 张伟刚, 等. 稀有金属材料与工程, 2011, 40(3), 555.
48 Lyu Z J, He W X, Zhao J, et al. China Surface Engineering, 2012, 25(2), 56(in Chinese).
吕志军, 贺文雄, 赵健, 等. 中国表面工程, 2012, 25(2), 56.
49 He W X, Lv Z J, Zhao J, et al. Meterials Science & Technology, 2013, 21(2), 143(in Chinese).
贺文雄, 吕志军, 赵健, 等. 材料科学与工艺, 2013, 21(2), 143.
50 Tian L H, Li C J, Li C X, et al. China Surface Engineering, 2010, 23(2), 20(in Chinese).
田立辉, 李长久, 李成新, 等. 中国表面工程, 2010, 23(2), 20.
51 Huang J B, Wang W Z, Li Y J, et al. Ceramics International, 2021, 47(4), 5156.
52 Wang L, Yan D R, Yang Y, et al. Ceramics International, 2014, 40(5), 6481.
53 Qin Y F, Zheng G F, Zhu L Y, et al. Surface and Coatings Technology, 2018, 342, 137.
54 Mi P B, He J N, Qin Y F, et al. Surface and Coatings Technology, 2017, 309, 1.
55 Zou B L, Tao S Y, Huang W Z, et al. Applied Surface Science, 2013, 264, 879.
56 Zou B L, Khan Z S, Gu L J, et al. Corrosion Science, 2012, 62, 192.
57 Zou B L, Wang Y, Xu J Y, et al. Journal of Asian Ceramic Societies, 2018, 1(4), 322.
58 Chu Z H, Wei F S, Zheng X W, et al. Journal of Alloys and Compounds, 2019, 785, 206.
59 Qin Y F, Zhu L Y, He J N, et al. Surface and Coatings Technology, 2017, 329, 131.
60 Qin Y F, Jiao Q, Zheng G F, et al. Ceramics International, 2018, 44(14), 17230.
61 Mohammed S, Yamada M, Yasui T, et al. Surface and Coatings Technology, 2013, 216, 308.
62 Zhao H J, Guo F F, Zhu L Y, et al. Ceramics International, 2020, 46(6), 8344.
63 Zhang F Y, He J N, Chen K, et al. Applied Surface Science, 2018, 427, 905.
64 Qin Y F, Zhu L Y, He J N, et al. Vacuum, 2018, 147, 149.
65 Zhang F Y, Li C, Yan S, et al. Ceramics International, 2021, 47(3), 3173.
66 Fang S, Yang K, Zhao H Y, et al. Surface and Coatings Technology, 2015, 276, 8.
67 Qin Y F, Zhao H J, Li C, et al. Surface and Coatings Technology, 2020, 398, 126086.
68 Zhao X B, Yan D R, Li S, et al. Applied Surface Science, 2011, 257(23), 10078.
69 Ji X L, Gu P, Wang Z S, et al. Surface Technology, 2019, 48(4), 68(in Chinese).
纪秀林, 顾鹏, 王振松, 等. 表面技术, 2019, 48(4), 68.
70 Wang H Z, Cheng Y H, Yang J Y, et al. Surface and Coatings Technology, 2021, 414, 127081.
71 Richard M C, Mercado C E, Feltrim I L, et al. Surface and Coatings Technology, 2021, 427, 127841.
72 Mao Z P, Wang J, Sun B D, et al. Applied Surface Science, 2011, 257(7), 2610.
73 Balaskas A C, Kartsonakis I A, Tziveleka L A, et al. Progress in Organic Coatings, 2012, 74(3), 418.
74 Ramezanzadeh B, Attar M M. Progress in Organic Coatings, 2011, 71(3), 314.
75 Jin J, Luo Q, Wei X S, et al. Journal of Alloys and Compounds, 2017, 714, 356.
76 Liu Z, Yan D R, Dong Y C, et al. Corrosion Science, 2013, 75, 220.
77 Zhang Y, Wang Z H, Shi Y, et al. Ceramics International, 2019, 45(18), 24545.
[1] 田根, 王文宇, 常青, 任智强, 王晓明, 朱胜. 电弧增材制造技术研究现状及展望[J]. 材料导报, 2021, 35(23): 23131-23141.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed