Research Status of Reactive Plasma Spraying Technology
HUANG Qinghua1,2, CHEN Shuang1,*, LIU Ming2,*, ZHOU Xinyuan2, HUANG Yanfei2, WANG Haidou2,3
1 College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China 2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China 3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
Abstract: Reactive plasma spraying (RPS) is an efficient and widely used surface treatment technology, which has the advantages of high production efficiency, high energy utilization, high bonding strength of coating and a wide range of spray materials. In recent years, researchers have focused on the preparation of high melting point and high performance intermetallic compounds, ceramics and composite coatings by reactive plasma spraying, and the related performance testing and quality control. However, the research on the reaction exothermic behavior and reaction kinetic control of sprayed powder during flight and after reaching the substrate is not thorough. Moreover, there is a lack of research on the construction mechanism and growth model of the coating. In this paper, the current development of reactive plasma spraying technology is introduced from five aspects: mechanism of reactive plasma spraying, thermodynamic and kinetic analysis of reaction process, preparation method of reactive plasma spraying powder, reactive plasma spraying coating and its properties, and quality control of reactive plasma spraying coating. Among them, as for the mechanism of reactive plasma spraying, the solid/solid and solid/gas reaction mechanisms of spraying process are described. In the aspect of reaction thermodynamics and kinetics analysis, the conditions that required reaction occurrence, maintenance as well as the classical thermodynamic and kinetics calculation formulas are introduced. In the preparation of reactive plasma spraying powder, the advantages and disadvantages of mechanical mixing, spray drying, precursor pyrolysis, coating and other methods are compared. In the aspects of reactive plasma spraying coating and its properties, the related properties of several intermetallic compound coating, ceramic coating and composite coating are introduced respectively. In terms of quality control of reactive plasma spraying coating, the effects of process parameter optimization, addition of reinforcing particles and post-treatment technology on coating properties are described. Finally, the development trend of reactive plasma spraying technology is prospected.
1 Xu J Y, Wu Q D, Wei X L, et al. Meterials Reports, 2020, 34(13), 13155(in Chinese). 徐金勇, 吴庆丹, 魏新龙, 等. 材料导报, 2020, 34(13), 13155. 2 Tang L, He P F, Ma G Z, et al. Surface Technology, 2019, 48(8), 185(in Chinese). 唐令, 何鹏飞, 马国政, 等. 表面技术, 2019, 48(8), 185. 3 Zhao Y X, Wang S G, Ye Q F, et al. Surface Technology, 2018, 47(1), 21(in Chinese). 赵雅萱, 王少刚, 叶庆丰, 等. 表面技术, 2018, 47(1), 21. 4 Ji M M, Zhu S Z, Ma Z. Surface Technology, 2021, 50(1), 253(in Chinese). 姬梅梅, 朱时珍, 马壮. 表面技术, 2021, 50(1), 253. 5 Wei S M, Ma P, Ji P C, et al. Journal of Meterias Engineering, 2021, 49(10), 1(in Chinese). 魏水淼, 马盼, 季鹏程, 等. 材料工程, 2021, 49(10), 1. 6 He P F, Wang H D, Chen S Y, et al. Journal of Alloys and Compounds, 2020, 819, 153009. 7 Ghorbantabar O J, Shafiee A M, Sharifitabar M. Ceramics International, 2018, 44(16), 20115. 8 Tri-Widodo-Besar R, Zhang T, Marchant D, et al. Journal of Alloys and Compounds, 2019, 805, 104. 9 Gao H D, Wang Z H, Shao J. Surface Technology, 2016, 45(4), 31(in Chinese). 高海东, 王泽华, 邵佳. 表面技术, 2016, 45(4), 31. 10 He N N, Hou C X, Shu X Y, et al. Meterials Reports, 2018, 32(3), 510(in Chinese). 何宁宁, 侯晨曦, 舒小艳, 等. 材料导报, 2018, 32(3), 510. 11 Xia M, Wang Z H, Bai F, et al. Surface Technology, 2015, 44(8), 1(in Chinese). 夏铭, 王泽华, 柏芳, 等. 表面技术, 2015, 44(8), 1. 12 Yao Y H, Wang Z H, Zhou Z H, et al. Meterials of Mechnical Enginee-ring, 2011, 35(12), 1(in Chinese). 姚燚红, 王泽华, 周泽华, 等. 机械工程材料, 2011, 35(12), 1. 13 Lin Z, He J, Yan D, et al. Applied Surface Science, 2011, 257(23), 10282. 14 He J, Zhang F Y, Mi P B, et al. Surface and Coatings Technology, 2016, 305, 215. 15 Zhang F H, Li C, Yan S, et al. Ceramics International, 2021, 47(3), 3173. 16 Liu H Y, Huang J H, Yin C F, et al. Ceramics International, 2007, 33(5), 827. 17 Sun X, Huang J H, Yang J, et al. Ceramics International, 2019, 45(5), 5848. 18 Zhou X P, Wang X J, Zhu L K. Surface Technology. 2014, 43(4), 6(in Chinese). 周小平, 王小军, 朱理奎. 表面技术, 2014, 43(4), 6. 19 He P F, Tang L, Ma G Z, et al. Applied Surface Science, 2020, 530, 147246. 20 Yang Y, Yan D R, Dong Y C, et al. Tansactions of Meterials and Heat Treatment, 2011, 32(S1), 136(in Chinese). 杨勇, 阎殿然, 董艳春, 等. 材料热处理学报, 2011, 32(S1), 136. 21 Motohiro Y, Toshiaki Y, Mohammed S. Journal of Thermal Spray Technology, 2010, 19(3), 635. 22 Motohiro Y, Toshiaki Y, Mohammed S. Materials Transactions, 2013, 54(2), 207. 23 Galliano F, Galvanetto F E. Thin Solid Films, 2001, 384(2), 223. 24 Yao H Y, Wang Y Z, Wang H F, et al. China Surface Engineering, 2005, 18(3), 41(in Chinese). 姚海玉, 王引真, 王海芳, 等. 中国表面工程, 2005, 18(3), 41. 25 Yin S. Combustion synthesis, Metallurgical Industry Press, China, 1999, pp. 56(in Chinese). 殷声. 燃烧合成, 冶金工业出版社, 1999, pp. 56. 26 Liu C S, Li Z W, Huang J H, et al. The Chinese Journal of Nonferrous Metals, 2006(9), 1522(in Chinese). 刘长松, 李志文, 黄继华, 等. 中国有色金属学报, 2006(9), 1522. 27 Zhang P L. Self-propagating high-temperature synthsis with magnesiothermit reactions and stuctural macrokenitics research of TiB2 and ZrB2 ceramic. Master’s Thesis, Lanzhou University of Technology, China, 2008(in Chinese). 张鹏林. 镁热剂反应自蔓延高温合成TiB2和ZrB2陶瓷及其结构宏观动力学研究. 硕士学位论文, 兰州理工大学, 2008. 28 Jiao Y. Study on in-situ synthesis TiC/FeAl coating by laser cladding. Master’s Thesis, East China Jiaotong University, China, 2014(in Chinese). 焦宇. 激光熔覆原位合成TiC/FeAl复合涂层研究. 硕士学位论文 华东交通大学, 2014. 29 Li R H, Lv Y L, Xue M M, et al. Surface and Coatings Technology, 2020, 391, 125658. 30 Lv Y L, Chi Y L, Mao X Y, et al. Ceramics International, 2021, 47(8), 11320. 31 Shen J G, Zou B L, Cai X L, et al. Surface and Coatings Technology, 2019, 378, 125055. 32 Li C, Zhang F Y, He J N, et al. Materials Chemistry and Physics, 2020, 254, 123495. 33 Yan D R, Yang Y, Chu Z H, et al. Surface and Coatings Technology, 2017, 328, 94. 34 Yang Y, Yan D R, Dong Y C, et al. Journal of Thermal Spray Technology, 2013, 22(6), 1002. 35 Sun X, Li W, Huang J H, et al. Ceramics International, 2021, 47(17), 24438. 36 Liu H Y, Huang J H, Yin C F, et al. Ceramics international, 2007, 33(5), 827. 37 Zhu J L, Huang J H, Wang H T, et al. Applied Surface Science, 2008, 254(20), 6687. 38 Zhang C, Xu P, Wang W. Materials and Design, 2015, 35, 293. 39 Du L Z, Zhang W G, Huang C B. Journal of Thermal Spray Technology, 2014, 23(3), 463. 40 Enayati M H, Jafari M M. Materials Science & Engineering A, 2013, 46, 348. 41 Tian J J, Yao S W, Luo X T, et al. Acta Materialia, 2016, 110, 19. 42 Abu-warda N, López A J, López M D, et al. Surface and Coatings Technology, 2019, 359, 35. 43 Poblano-salas C A, Cabral-miramontes J A, Gallegos-Melgar A, et al. International Journal of Refractory Metals and Hard Materials, 2015, 48, 167. 44 Mao Z P, Ma J, Wang J, et al. Journal of Materials Science, 2009, 44(12), 3265. 45 Horlock A J, Sadeghian Z, McCartney D G, et al. Journal of Thermal Spray Technology, 2005, 14(1), 77. 46 Cagri T, Yamazaki M, Tsunekawa Y, et al. Surface and Coatings Technology, 2008, 202(17), 4163. 47 Wang W M, Du L Z, Zhang W G, et al. Rare Metal Materials and Engineering, 2011, 40(3), 555(in Chinese). 王文明, 杜令忠, 张伟刚, 等. 稀有金属材料与工程, 2011, 40(3), 555. 48 Lyu Z J, He W X, Zhao J, et al. China Surface Engineering, 2012, 25(2), 56(in Chinese). 吕志军, 贺文雄, 赵健, 等. 中国表面工程, 2012, 25(2), 56. 49 He W X, Lv Z J, Zhao J, et al. Meterials Science & Technology, 2013, 21(2), 143(in Chinese). 贺文雄, 吕志军, 赵健, 等. 材料科学与工艺, 2013, 21(2), 143. 50 Tian L H, Li C J, Li C X, et al. China Surface Engineering, 2010, 23(2), 20(in Chinese). 田立辉, 李长久, 李成新, 等. 中国表面工程, 2010, 23(2), 20. 51 Huang J B, Wang W Z, Li Y J, et al. Ceramics International, 2021, 47(4), 5156. 52 Wang L, Yan D R, Yang Y, et al. Ceramics International, 2014, 40(5), 6481. 53 Qin Y F, Zheng G F, Zhu L Y, et al. Surface and Coatings Technology, 2018, 342, 137. 54 Mi P B, He J N, Qin Y F, et al. Surface and Coatings Technology, 2017, 309, 1. 55 Zou B L, Tao S Y, Huang W Z, et al. Applied Surface Science, 2013, 264, 879. 56 Zou B L, Khan Z S, Gu L J, et al. Corrosion Science, 2012, 62, 192. 57 Zou B L, Wang Y, Xu J Y, et al. Journal of Asian Ceramic Societies, 2018, 1(4), 322. 58 Chu Z H, Wei F S, Zheng X W, et al. Journal of Alloys and Compounds, 2019, 785, 206. 59 Qin Y F, Zhu L Y, He J N, et al. Surface and Coatings Technology, 2017, 329, 131. 60 Qin Y F, Jiao Q, Zheng G F, et al. Ceramics International, 2018, 44(14), 17230. 61 Mohammed S, Yamada M, Yasui T, et al. Surface and Coatings Technology, 2013, 216, 308. 62 Zhao H J, Guo F F, Zhu L Y, et al. Ceramics International, 2020, 46(6), 8344. 63 Zhang F Y, He J N, Chen K, et al. Applied Surface Science, 2018, 427, 905. 64 Qin Y F, Zhu L Y, He J N, et al. Vacuum, 2018, 147, 149. 65 Zhang F Y, Li C, Yan S, et al. Ceramics International, 2021, 47(3), 3173. 66 Fang S, Yang K, Zhao H Y, et al. Surface and Coatings Technology, 2015, 276, 8. 67 Qin Y F, Zhao H J, Li C, et al. Surface and Coatings Technology, 2020, 398, 126086. 68 Zhao X B, Yan D R, Li S, et al. Applied Surface Science, 2011, 257(23), 10078. 69 Ji X L, Gu P, Wang Z S, et al. Surface Technology, 2019, 48(4), 68(in Chinese). 纪秀林, 顾鹏, 王振松, 等. 表面技术, 2019, 48(4), 68. 70 Wang H Z, Cheng Y H, Yang J Y, et al. Surface and Coatings Technology, 2021, 414, 127081. 71 Richard M C, Mercado C E, Feltrim I L, et al. Surface and Coatings Technology, 2021, 427, 127841. 72 Mao Z P, Wang J, Sun B D, et al. Applied Surface Science, 2011, 257(7), 2610. 73 Balaskas A C, Kartsonakis I A, Tziveleka L A, et al. Progress in Organic Coatings, 2012, 74(3), 418. 74 Ramezanzadeh B, Attar M M. Progress in Organic Coatings, 2011, 71(3), 314. 75 Jin J, Luo Q, Wei X S, et al. Journal of Alloys and Compounds, 2017, 714, 356. 76 Liu Z, Yan D R, Dong Y C, et al. Corrosion Science, 2013, 75, 220. 77 Zhang Y, Wang Z H, Shi Y, et al. Ceramics International, 2019, 45(18), 24545.