Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21070250-10    https://doi.org/10.11896/cldb.21070250
  金属与金属基复合材料 |
镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究
安凌云1, 常成功2,3,*, 康迪菘1, 王钊1, 孟雷超1, 彭建洪1
1 青海民族大学物理与电子信息工程学院,青海省纳米材料与技术重点实验室,西宁 810007
2 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效重点实验室,西宁 810008
3 青海省盐湖资源化学重点实验室,西宁 810008
Study on Corrosion Resistance of Micro-arc Oxidation Modified Magnesium Alloy in Three Kinds of Saturated Salt Solutions
AN Lingyun1, CHANG Chenggong2,3,*, KANG Disong1, WANG Zhao1, MENG Leichao1, PENG Jianhong1
1 Qinghai Provincial Key Laboratory of Nanomaterials and Technology, College of Physics and Electronic Information Engineering, Qinghai Minzu University, Xining 810007, China
2 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xining 810008, China
3 Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
下载:  全 文 ( PDF ) ( 47569KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在硅酸盐体系中,在AZ31B镁合金上制备微弧氧化膜。通过TT260数字式涡流测厚仪测量膜层厚度,利用SEM、EDS、XRD和XPS检测膜层微观形貌、成分、物相组成和元素化学结合状态。应用循环伏安曲线、动电位极化曲线和电化学阻抗谱评价膜层在硫酸钠、氯化钠和碳酸氢钠三种饱和盐溶液中的耐蚀性能。结果表明,镁合金微弧氧化膜在不同饱和盐溶液中耐蚀性和腐蚀行为不同。在硫酸钠腐蚀介质中,SO42-不与膜层物质反应,且其半径较大,穿透能力较弱,故膜层循环伏安曲线所围成的环面积最小,比氯化钠中的和碳酸氢钠中的分别小了二个和四个数量级,腐蚀电流密度为氯化钠中的41.6%,比碳酸氢钠中的低了四个数量级,且其阻抗模值也较高,呈现最佳的耐蚀性能。在氯化钠溶液中,由于Cl-活性高、半径小、穿透力强,膜层耐蚀性较差,显现较强的点腐蚀特征。在碳酸氢钠介质中,因HCO3-和膜层物质反应,以及膜层的多孔特性,导致膜层耐蚀性最差。随浸泡时间延长,膜层在硫酸钠和氯化钠溶液中,耐蚀性呈现先增加后降低的趋势,而在碳酸氢钠中,先降低后波动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安凌云
常成功
康迪菘
王钊
孟雷超
彭建洪
关键词:  镁合金  微弧氧化  微观结构  饱和硫酸钠溶液  饱和氯化钠溶液  饱和碳酸氢钠溶液  耐蚀性    
Abstract: Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy in the silicate system. The thickness of the coatings was measured by the TT260 digital eddy current thickness gauge, and the microscopic morphology, element and phase compositions as well as elemental chemical bonding state of the coatings were measured by SEM, EDS, XRD and XPS. Cyclic voltammetry curve, potentiodynamic polarization curve and electrochemical impedance spectroscopy were applied to evaluate the corrosion resistance of the coatings in saturated sodium sulfate, sodium chloride and sodium bicarbonate corrosive media. The results shown that the corrosion resistance and corrosive behavior of the coatings are different in diverse saturated salt solutions. In sodium sulfate corrosive media, SO42- ions can not react with the coating, and its ability of penetrating coating is also weaker ascribed to its larger radius. Therefore, the ring area enclosed by the cyclic voltammetry curve is the smallest, which is 2 and 4 orders of magnitude smaller than those of sodium chloride and sodium bicarbonate, respectively. The corrosion current density of the coating is 41.6% of that of saturated sodium chloride, and is 4 orders of magnitude lower compared to that of sodium bicarbonate. Meantime, its impedance modulus is also higher. Thus it presents the best corrosion resistance. In sodium chloride media, the corrosion resis-tance of the coating is poorer due to the high activity, small radius and strong penetrating power of Cl- ions, and the coating exhibits the stronger pitting corrosion characteristics. In sodium bicarbonate solution, the coating possesses the worst corrosion resistance owing to the reaction of HCO3- with the coating and porous characteristics of the coating. With the immersion time prolonging, the corrosion resistance of the coating in saturated sodium sulfate and sodium chloride corrosive media increases first and then decreases, while in saturated sodium bicarbonate, the corrosion resistance first reduces and then fluctuates.
Key words:  magnesium alloy    micro-arc oxidation    microstructure    saturated Na2SO4 media    saturated NaCl media    saturated NaHCO3 media    corrosion resistance
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TG174  
基金资助: 青海省自然科学基金(2020-ZJ-966Q);青海民族大学高层次人才项目(2021XJG13);青海省“昆仑英才·高端创新创业人才”拔尖人才
通讯作者:  * 常成功,中国科学院青海盐湖研究所副研究员。2007年河南城建学院环境工程本科毕业,2010年兰州理工大学化学工程专业硕士毕业后到中国科学院青海盐湖研究所工作至今。主要从事镁基材料性能研究工作。2021年兰州理工大学在读博士研究生。共发表论文10余篇。ccg168@isl.ac.cn   
作者简介:  安凌云,2009年6月、2019年6月分别于兰州理工大学获得工学学士学位和博士学位。现为青海民族大学副教授。主要从事轻金属表面改性与防护工作。2020年入选为青海省“昆仑英才·高端创新创业人才”拔尖人才。在Journal of Magnesium and AlloysSurface & Coatings TechnologyTransactions of Nonferrous Metals Society of China以及《中国有色金属学报》等期刊发表论文10余篇。
引用本文:    
安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
AN Lingyun, CHANG Chenggong, KANG Disong, WANG Zhao, MENG Leichao, PENG Jianhong. Study on Corrosion Resistance of Micro-arc Oxidation Modified Magnesium Alloy in Three Kinds of Saturated Salt Solutions. Materials Reports, 2023, 37(7): 21070250-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070250  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21070250
1 Mordike B L, Ebert T. Materials Science and Engineering:A, 2001, 302(1), 37.
2 Gray J E, Luan B. Journal of Alloys and Compounds, 2002, 336(1-2), 88.
3 Guo X W, Guo J C, Zhang Z C, et al. Surface Technology, 2017, 46(3), 53 (in Chinese).
郭兴伍, 郭嘉成, 章志铖, 等. 表面技术, 2017, 46(3), 53.
4 Yerokhin A L, Nie X, Leyland A, et al. Surface and Coatings Technology, 1999, 122(2-3), 73.
5 Dou J. Chen Y, Yu H, et al. Surface Engineering, 2017, 33(10), 731.
6 Chen Q Z, Tong Q, Huang D Y, et al. Materials Reports, 2018, 32(S1), 278 (in Chinese).
陈泉志, 童庆, 黄德宇, 等. 材料导报, 2018, 32(S1), 278.
7 Hussein R O, Zhang P, Nie X, et al. Surface and Coatings Technology, 2011, 206(7), 1990.
8 Simchen F, Sieber M, Lampke T. Surface & Coatings Technology, 2017, 315, 205.
9 Chen M, Ma Y Z, Hao Y. Frontiers of Mechanical Engineering in China, 2010, 5(1), 98.
10 Dong H R, Ma Y, Guo H X, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(3), 690 (in Chinese).
董海荣, 马颖, 郭惠霞, 等. 中国有色金属学报, 2015, 25(3), 690.
11 RakochA G, Monakhova E P, Khabibullina Z V, et al. Journal of Magnesium and Alloys, 2020, 8(3), 587.
12 Tu W, Cheng Y, Wang X, et al. Journal of Alloys and Compounds, 2017, 725, 199.
13 Chu C L, Han X, Xue F, et al. Applied Surface Science, 2013, 271, 271.
14 Malayoglu U, Tekin, K C, Shrestha, S. Surface and Coatings Technology, 2010, 205(6), 1793.
15 Cao Y X, Wang M J, Zhou F, et al. Surface Technology, 2021, 50(3), 348 (in Chinese).
曹雅心, 王梦杰, 周凡, 等. 表面技术, 2021, 50(3), 348.
16 Farhadi S S, Aliofkhazraei M, Darband G B, et al. Journal of Magnesium and Alloys, 2017, 5(2), 210.
17 Jin J, Li H, Li X. Rare Metal Materials and Engineering, 2017, 46(5), 1202.
18 Li Z, Kuang Q, Dong X, et al. Surface and Coatings Technology, 2019, 375, 600.
19 Yazici M, Gulec A E, Gurbuz M, et al. Thin Solid Films, 2017, 644, 92.
20 Luo H H, Cai Q Z. Rare Metal Materials & Engineering, 2011, 40(S2), 146 (in Chinese).
骆海贺, 蔡启舟. 稀有金属材料与工程, 2011, 40(S2), 146.
21 Gu Y H, Cai X J, Guo Y J, et al. Materials and Design, 2013, 43, 542.
22 Liang J, Srinivasan P B, Blawert C, et al. Corrosion Science, 2010, 52(2), 540.
23 Tan S Y, Zhang X B, Jiang X B, et al. Materials Reports B:Research Papers, 2016, 30(8), 5 (in Chinese).
谈淑咏, 章晓波, 江先彪, 等. 材料导报:研究篇, 2016, 30(8), 5.
24 Guo H X. The electrochemical corrosion behavior and mechanism of microarc oxidation coatings on magnesium alloys. Ph.D. Thesis, Lanzhou University of Technology, China, 2014 (in Chinese)
郭惠霞. 镁合金微弧氧化膜电化学腐蚀行为及机理研究. 博士学位论文, 兰州理工大学, 2014.
25 Li Y Y, Hu C R. Experiment design and data processing, Chemical Industry Press, China, 2020, pp.16 (in Chinese)
李云雁, 胡传荣. 实验设计与数据处理, 化学工业出版社, 2010, pp.16.
26 Fattah-Alhosseini A, Chaharmahali R, Babaei K. Journal of Magnesium and Alloys, 2020, 8(3), 799.
27 LouB S, Yen C A, Chen Y Y, et al. Journal of Materials Research and Technology, 2021, 10(3), 1355.
28 Chen Y, Yang Y, Zhang T, et al. Surface and Coatings Technology, 2016, 307, 825.
29 Wang Z Q. Studies on preparation and properties of micro-arc oxidation coating on biomedical AZ31B magnesium alloy. Master's Thesis, Liao-ning University, China, 2011 (in Chinese)
王泽庆. 生物医用AZ31B镁合金表面微弧氧化膜层的制备及性能研究. 硕士学位论文, 辽宁大学, 2011.
30 Li Z J, Yuan Y, Jing X Y, et al. Journal of Alloys and Compounds, 2017, 706, 419.
31 Li Z J, Jing X Y, Yuan Y, et al. Corrosion Science, 2012, 63, 358.
32 Wang L, Chen L, Yan Z C, et al. Journal of Alloys and Compounds, 2009, 480(2), 469.
33 Wang F P, Kang W L, Jing H M, et al. Principle, method and application of corrosion electrochemistry, Chemical Industry Press, China, 2008, pp.202 (in Chinese)
王凤平, 康万利, 敬和民, 等. 腐蚀电化学原理、方法及应用, 化学工业出版社, 2008, pp.202.
34 Liu C C, Liang J, Zhou J S, et al. Surface and Coatings Technology, 2016, 304, 179.
35 Guo H X, Ma Y, Zhang Y F, et al. Journal of the Chinese Ceramic Society, 2013, 41(3), 382 (in Chinese).
郭惠霞, 马颖, 张玉福, 等. 硅酸盐学报, 2013, 41(3), 382.
[1] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[2] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[3] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[4] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[5] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[6] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[7] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[8] 陈小丽. 有机酸对新型铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 22010030-5.
[9] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[10] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[11] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[12] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[13] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[14] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[15] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed