Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 20120108-9    https://doi.org/10.11896/cldb.20120108
  金属与金属基复合材料 |
镁合金氧化机理研究进展
李多娇, 程春龙, 乐启炽*, 陈亮, 闫家仕
东北大学材料电磁过程研究教育部重点实验室,沈阳 110819
Research Progress on Oxidation Mechanism of Magnesium Alloys
LI Duojiao, CHENG Chunlong, LE Qichi*, CHEN Liang, YAN Jiashi
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 8492KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁及镁合金是最轻的结构工程金属,符合当今减重、节能、环保等要求。镁合金还具有高阻尼能力、良好的铸造性和焊接性、较高的导热性和导电性以及可回收特性。对比目前应用广泛的铝合金,镁合金的使用在满足力学性能要求的同时可以达到减重的效果,并减小对环境的压力。
镁合金应用前景广阔,但其对氧的高亲和力导致其在加工或使用过程中极易被氧化,且生成的氧化膜疏松多孔,不具有保护性,导致镁合金的加工与应用受到极大限制。因此,镁合金高温抗氧化性能研究是一个重要的研究方向。
目前,国内外镁合金高温氧化研究主要集中在以下几个方面:(1)不同温度下镁合金的氧化行为研究;(2)合金化对镁合金高温氧化性能的影响;(3)不同状态(液态/固态)镁合金的氧化行为。虽然镁合金氧化性研究已经较为深入,但至今仍缺乏综述性的总结。
因此,本文旨在综述并分析国内外镁合金高温氧化的研究现状,主要关注不同温度下镁合金的氧化行为、合金化对镁合金高温氧化性能的影响及其机理、镁合金氧化机理及保护性氧化膜失效的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李多娇
程春龙
乐启炽
陈亮
闫家仕
关键词:  镁合金  高温氧化  合金化  氧化膜  氧化机理    
Abstract: Magnesium and its alloys are the lightest structural metals, which meet requirements for weight loss, energy saving and emission reduction. Magnesium alloys exhibits advantages of high damping capacity, perfect castability and weldability, positive thermal and electrical conductivity, and recyclability. Compared with aluminum alloys widely used at present, the use of magnesium alloys can meet the requirements of mechanical properties at the same time achieves effect of weight reduction and is beneficial to environment.
Magnesium alloys have broad application prospects,however, the widespread usage of magnesium alloys is limited by the characteristics of high affinity with oxygen and prone to form porous oxide scales on surface. Thus, it is of great significance to research the high temperature oxidation resistance of magnesium alloys.
Nowadays, investigations on high temperature oxidation of magnesium alloys mainly concentrate in the following aspects: (1) research on the oxidation behaviors of magnesium alloys at different temperatures; (2) effect of alloy-elements on high temperature oxidation resistance of magnesium alloys; (3) oxidation behaviors of magnesium alloys at different states (liquid/solid). So, in order to broaden the application of magnesium alloys, it is necessary to show a comprehensive summary on oxidation resistance and mechanism of magnesium alloys.
The present paper aims to review the research of home and abroad on high temperature oxidation of magnesium alloys. The oxidation beha-viors, effect of alloy-elements on high temperature oxidation resistance, oxidation mechanism of magnesium alloys,and reasons for failure of protective oxide film are discussed.
Key words:  magnesium alloy    high temperature oxidation    alloying    oxide film    oxidation mechanism
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(52274377)
通讯作者:  * 乐启炽,东北大学材料电磁过程研究教育部重点实验室教授、博士研究生导师。1990年本科毕业于东北大学有色金属冶金专业,并于2001年获得材料加工专业获博士学位,主要从事镁合金凝固与外场调控、镁合金成形理论与工艺、高性能镁合金与镁基复合材料以及镁合金电化学与表面工程的研究工作。在Journal of Power Sources、Ultrasonics Sonochemistry、Corrosion Science、《金属学报》等国内外重要学术期刊和国际会议上发表学术论文300余篇,其中SCI收录180余篇;主编教材1部,合作撰写专著4部;已授权专利50余项。qichil@mail.neu.edu.cn   
作者简介:  李多娇,2019年6月毕业于沈阳理工大学,获得工学学士学位。现为东北大学材料科学与工程学院硕士研究生,目前主要从事镁合金的高温氧化研究。
引用本文:    
李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
LI Duojiao, CHENG Chunlong, LE Qichi, CHEN Liang, YAN Jiashi. Research Progress on Oxidation Mechanism of Magnesium Alloys. Materials Reports, 2023, 37(1): 20120108-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120108  或          http://www.mater-rep.com/CN/Y2023/V37/I1/20120108
1 Mehra D, Mahapatra M M, Harsha S P. Journal of Magnesium and Alloys, 2018, 6(1), 100.
2 Ali Y, Qiu D, Jiang B, et al. Journal of Alloys and Compounds, 2015, 619, 639.
3 Luo K, Effect of Y and Gd content on the microstructure and mechanical properties of Mg-Y-RE alloys. Master’s Thesis, Shanghai Jiao Tong University, China, 2019(in Chinese).
骆康. Y与Gd含量对Mg-Y-RE铸造镁合金微观组织与力学性能的影响. 硕士学位论文. 上海交通大学, 2019.
4 Yeganeh M, Mohammadi N. Journal of Magnesium and Alloys, 2018, 6(1), 59.
5 Ji H, Liu W C, Wu G H,, et al. Materials Science & Engineering A, 2018, 739, 395.
6 Lyu J B, Kim J, Liao H X, et al. Materials Science & Engineering A, 2020, 773, 138735.
7 Du J Q, Lan Z Q, Zhang H, et al. Journal of Alloys and Compounds, 2019, 802, 667.
8 Ning H, Zhou X Y, Zhang Z Y, et al. Applied Surface Science, 2019, 464, 644.
9 Homma T, Kunito N, Kamado S. Scripta Materialia, 2009, 61(6), 647.
10 Itoi T, Takahashi K, Moriyama H, et al. Scripta Materialia, 2008, 59(10), 1155.
11 Wang J F, Song P F, Huang S, et al. Materials Letters, 2013, 93, 415.
12 Pan H, Pan F, Xiao W, et al. International Journal of Thermophysics, 2013, 34(7), 1336.
13 Pan H, Pan F, Wang X. Materials Science and Technology: MST: A Publication of the Institute of Metals, 2014, 918, 165614.
14 Lentz M, Coelho R S, Camin B, et al. Materials Science and Engineering A, 2014, 610(29), 54.
15 Li J, Yang Y, Deng H, et al. Journal of Alloys and Compounds, 2020, 823, 153839.
16 Czerwinski F. Corrosion Science, 2014, 86, 1.
17 Mordike B L, Ebert T. Materials Science and Engineering A, 2001, 302, 37.
18 Ren P L. Advanced Materials Industry, 2014(4), 45(in Chinese).
任朋立. 新材料产业, 2014(4), 45.
19 Yu X, Jiang B, Yang H, et al. Applied Surface Science, 2015, 353, 1013.
20 Kondori B, Mahmudi R. Metallurgical & Materials Transactions A, 2009, 40(8), 2007.
21 Luo A A. Metallurgical Reviews, 2014, 49(1), 13.
22 Pan N, Wei Y H, Hou L F, et al. Transactions of Materials and Heat Treatment, 2013(3), 67(in Chinese).
潘娜, 卫英慧, 侯利锋, 等. 材料热处理学报, 2013(3), 67
23 Czerwinski F. Acta Materialia, 2002, 50(10), 2639.
24 Medved J, Mrvar P, Vonina M. Oxidation of Metals, 2009, 71(5-6), 257.
25 Zhou L H. Transactions of Nonferrous Metals Society of China, 2009, 19(2), 299.
26 Fan J F, Cheng S L, Xie H, et al. Metallurgical & Materials Transactions A, 2005, 36(1), 235.
27 Wang X M, Zeng X Q, Wu G S, et al. Applied Surface Science, 2007, 253(22), 9017.
28 Zou Y L. Research of an ignition-proof magnesium alloy with rare earth addition. Master’s Thesis, Chongqing University, China, 2003(in Chinese).
邹永良. 稀土阻燃镁合金的研究. 硕士学位论文, 重庆大学, 2003.
29 Czerwinski F. International Materials Reviews, 2015, 60(5), 264.
30 Lee D B. Corrosion Science, 2013, 70, 243.
31 Li Q, Wang Q, Wang Y, et al. Journal of Alloys & Compounds, 2007, 427(1-2), 115.
32 Xing Q Y, Meng L G, Yang S J, et al. Foundry, 2018, 67(4), 317(in Chinese).
邢清源, 孟令刚, 杨守杰, 等. 铸造, 2018, 67(4), 317.
33 Wu L Y. The research on microstructure, properties at high temperature for Mg-Gd-Y-Zn alloy. Ph. D. Thesis, Hunan University, China, 2012(in Chinese).
吴落义. Mg-Gd-Y-Zn系合金的微观组织与高温性能研究. 博士学位论文, 湖南大学, 2012.
34 Tan Q, Atrens A, Mo N, et al. Corrosion Science the Journal on Environmental Degradation of Materials & Its Control, 2016, 112, 734.
35 Tan Q Y. Surface Innovations, 2019, 7(2), 71.
36 Fournier V, Marcus P, Olefjord I. Surface and Interface Analysis, 2002, 34(1), 494.
37 Czerwinski F. JOM, 2012, 64(12), 1477.
38 Gulbransen E A. Transaction of the Electrochemical Society, 2015, 87(1), 589.
39 Czerwinski F. JOM, 2004, 56(5), 29.
40 Wang X F, Xiong S M. Transactions of Nonferrous Metals Society of China, 2011, 21(4), 807.
41 Jeurgens L P H, Vinodh M S, Mittemeijer E J. Acta Materialia, 2008, 56(17), 4621.
42 Rao J S. Study on oxidation behavior of ignition-proof magnesium alloy added with RE. Ph. D. Thesis, Chongqing University, China, 2010(in Chinese).
饶劲松. 混合稀土阻燃镁合金氧化行为的研究. 博士学位论文. 重庆大学, 2010.
43 Zeng R C. Material corrosion and protection, Chemical Industry Press, China, 2006(in Chinese).
曾荣昌. 材料的腐蚀与防护, 化学工业出版社, 2006.
44 Breiter A L, Mal'Tsev V M, Popov E I. Combustion, Explosion and Shock Waves, 1977, 13(4), 475.
45 Cheng C, Lan Q, Liao Q, et al. Corrosion Science, 2019, 160, 108176.
46 Czerwinski F, Szpunar J A. Acta Materialia, 1998, 46(4), 1403.
47 Lee D B. Oxidation of Metals, 2016, 8(1-2), 65.
48 Jang D I, Kim S K. Essential readings in magnesium technology, Springer International Publishing, Germany, 2016, pp. 145.
49 Inoue S I, Yamasaki M, Kawamura Y. Corrosion Science, 2017, 122, 118.
50 Tan Q, Mo N, Jiang B, et al. Corrosion Science, 2017, 122, 1.
51 Han D, Zhang J, Huang J F, et al. Journal of Magnesium and Alloys, 2020, 8(2), 329.
52 Inoue S, Yamasaki M, Kawamura Y. Corrosion Science, 2017, 112, 118.
53 Cheng C, Li X, Le Q, et al. Journal of Magnesium and Alloys, 2020, 8(4), 1281.
54 Dai J H. Investigation on diffusion behaviors of alloy elements in magne-sium. Ph. D. Thesis, Chongqing University, China, 2016(in Chinese).
戴甲洪. 合金元素在镁合金中扩散行为的研究. 博士学位论文, 重庆大学, 2016.
55 Fan C. The study on the oxidation kinetics of the rare-earth magnesium alloy. Master’s Thesis, Chongqing University, China, 2006(in Chinese).
范超. 混合稀土阻燃镁合金氧化动力学的研究. 硕士学位论文, 重庆大学, 2006.
56 Hao X B. The study on ignition-proof behavior and strengthening mechanism of magnesium alloy. Master’s Thesis, Hebei University of Technology, China, 2008(in Chinese).
郝孝博. 镁合金阻燃行为及其强化机理的研究. 硕士学位论文, 河北工业大学, 2008.
57 He Y D, Qi H B. Introduction to material corrosion and protection, Machinery Industry Press, China, 2005(in Chinese).
何业东, 齐慧滨. 材料腐蚀与防护概论, 机械工业出版社, 2005.
58 Inoue S I, Yamasaki M, Kawamura Y. Corrosion Science, 2019, 149, 133.
59 Isshiki M, Irifune T, Kei H, et al. Nature: International Weekly Journal of Science, 2004, 427(6969), 60.
60 Czerwinski F. Corrosion Science, 2004, 46(2), 377.
61 Huang H, Yuan G, Chu Z, et al. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 241.
62 Pan F S, Han E H. High-performance wrought magnesium alloy and processing technology, Science Press, China, 2007(in Chinese).
潘复生, 韩恩厚. 高性能变形镁合金及加工技术, 科学出版社, 2007.
63 Kim Y M, Yim C D, Kim H S, et al. Scripta Materialia, 2011, 65(11), 958.
64 Han D, Zhang J, Huang J, et al. Journal of Magnesium and Alloys, 2020, 8(2), 329.
65 Inoue S I, Yamasaki M, Kawamura Y. Corrosion Science, 2020, 174, 108858.
66 Czerwinski F. Journal of the Electrochemical Society, 1993, 140(9), 2606.
67 Fan J F, Yang G C, Zhou R H, et al. The Chinese Journal of Nonferrous Metals, 2006, 16(10), 1716(in Chinese).
樊建锋, 杨根仓, 周尧和, 等. 中国有色金属学报, 2006, 16(10), 1716.
68 Kiejna A, Wojciechowski K F. Journal of Physics C Solid State Physics, 1983, 16(35), 6883.
69 Aydin D S, Bayindir Z, Pekguleryuz M O. Journal of Materials Science, 2013, 48(23), 8117.
70 Yamauchi H. Physical Review B-Condens Matter, 1985, 31(12), 7688.
71 Ren F, Cao K, Ren J, et al. Journal of Computational and Theoretical Nanoscience, 2014, 11(2), 344.
[1] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[2] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[3] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[4] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[5] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[6] 吕绪明, 江涛, 张云汉, 苑建志, 杨凯, 党博, 张平则. 纯铜表面Ta-W合金层的抗高温氧化及摩擦行为[J]. 材料导报, 2022, 36(23): 22050017-5.
[7] 徐志超, 吴涛, 郭学锋, 杨文朋, 樊建峰, 肖思宇. 脉冲电流在镁合金加工中的应用进展[J]. 材料导报, 2022, 36(21): 20100018-10.
[8] 刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
[9] 张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
[10] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[11] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[12] 黄晓锋, 张展裕, 尚文涛, 杨凡, 张胜. Mg-7Zn-0.2Ti-xCu镁合金非枝晶组织的演变过程及机理[J]. 材料导报, 2022, 36(18): 21050203-7.
[13] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[14] 刘员环, 曾美琴, 鲁忠臣, 朱敏. 等离子球磨技术在材料制备中的应用[J]. 材料导报, 2022, 36(15): 20120251-9.
[15] 潘冶, 钟旭, 朱银安, 陆韬, 于金. 高熵合金FeCoNiCrP的制备和电催化析氧性能[J]. 材料导报, 2022, 36(14): 22020109-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed