Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20120048-9    https://doi.org/10.11896/cldb.20120048
  金属与金属基复合材料 |
铸造耐热铝合金的研究进展及展望
张华炜, 刘悦, 范同祥
上海交通大学金属基复合材料国家重点实验室,上海 200240
Progress and Prospect of Cast Heat-resistant Aluminum Alloy
ZHANG Huawei, LIU Yue, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 2126KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着资源和环境问题日益突出,世界各国均对汽车工业节能减排提出了迫切的要求。用铸造耐热铝合金替代铸铁可大幅度减轻车身质量,因此铸造耐热铝合金成为新一代汽车发动机缸体和活塞的主流材料。然而,商业铸造铝合金的高温性能并不能较好地满足当前应用需求,并且快速凝固铝合金和铝基复合材料受限于高昂成本和制备复杂性而不能被大范围推广。因此,目前学术界和产业界的研究多集中于铸造铝合金耐热性能的提升和新型高温强化机理的探索。
铸造耐热铝合金可分为三个体系:Al-Si、Al-Cu和Al-Mg。其中,Al-Si合金因具备优异的铸造流动性等成型特性而被大范围研究和应用。通过添加多种元素进行合金化,在铝合金中形成各种熔点高、热稳定性好的金属间化合物阻碍晶界运动和位错滑移是目前主流的强化方式。而经过热处理和Si相变质,进一步调控合金的组织结构也是一种重要的强化手段。此外,优化熔炼和铸造工艺,减少夹杂和铸造缺陷对提高铸造铝合金的高温强度也有重要意义。值得注意的是,近年来的研究表明第二相的三维网状互联结构与合金高温性能的提升存在密切关系。在高温强度以外,国内外学者也致力于研究铸造铝合金的蠕变性能、疲劳性能和热暴露性能。
本文从体系组成和国内外商用产品两方面归纳了铸造耐热铝合金的发展和应用,分析了铸造铝合金组织结构调控的基本手段,总结了铸造铝合金高温性能的最新研究成果,同时对铸造耐热铝合金的未来研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张华炜
刘悦
范同祥
关键词:  铸造铝合金  耐热铝合金  合金化  热处理  高温性能    
Abstract: As issues of the resource and environment become increasingly prominent, countries all over the world have put forward urgent requirements for the automobile industry to reduce energy consumption and pollution emissions. At the same time, cast heat-resistant aluminum alloy has become the mainstream material for new automobile engine cylinder blocks and pistons, which replaces traditional cast iron owing to its light weight. However, the high-temperature performance of commercial cast aluminum alloys cannot well meet the current application requirements. Meanwhile, rapidly solidified aluminum alloys and aluminum composite materials cannot be widely promoted because of the high cost and the complexity of preparation. Therefore, the current academic and industrial studies mostly focus on the improvement of the heat resistance of cast aluminum alloy and the exploration of new high-temperature strengthening mechanisms.
At present, cast heat-resistant aluminum alloys can be divided into three systems: Al-Si, Al-Cu, and Al-Mg. Among them, Al-Si alloys have been widely studied and applied due to their excellent casting fluidity and other molding properties. By adding a variety of elements for alloying, forming various intermetallic compounds with high melting point and good thermal stability in the aluminum alloy to hinder grain boundary movement and dislocation slip is the current mainstream strengthening method. After heat treatment and Si phase modification, further control of the alloy structure is an important strengthening method as well. In addition, optimizing smelting and casting processes, reducing inclusions and casting defects are also of great significance for improving the high-temperature strength of cast aluminum alloys. It is worth noting that recent studies have found that the three-dimensional network interconnection structure of the second phase is closely related to the improvement of the high-temperature performance of the aluminum alloy. Besides high-temperature strength, domestic and foreign scholars are still committed to the study of the creep properties, fatigue properties, and thermal exposure properties of cast aluminum alloys.
In this paper, the development and application of cast heat-resistant aluminum alloys are summarized from both the system composition and domestic and foreign commercial products, and the basic methods of organizational and structural control of cast aluminum alloys are analyzed. Moreover, the latest study results on the high-temperature properties of cast aluminum alloys are generalized. Finally, the future directions to the cast heat-resistant aluminum alloys are proposed.
Key words:  cast aluminum alloy    heat-resistant aluminum alloy    alloying    heat treatment    high-temperature performance
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TB31  
基金资助: 国家重点研发专项课题(2017YFB0703101)
通讯作者:  txfan@sjtu.edu.cn20120048-1   
作者简介:  张华炜,2018年6月毕业于大连理工大学,获得工学学士学位。现为上海交通大学金属基复合材料国家重点实验室硕士研究生,在范同祥教授的指导下进行研究。目前主要研究领域为铸造耐热铝合金。范同祥,上海交通大学材料学院教授、博士研究生导师。1999年获上海交通大学和日本大阪大学联合培养博士学位,2000—2001年在日本科学技术厅进行博士后研究工作。作为主要人员近年来主持或承担国家杰出青年基金项目、教育部新世纪优秀人才计划、霍英东基金优选资助课题、上海市基础研究重点项目和重大项目、上海市科委纳米专项等研究。兼任中国材料研究学会青年委员会理事、中国有色金属学会材料科学与工程委员会委员和多种国内外期刊审稿人。主要从事特种功能金属基复合材料和生物启迪功能材料工作。近年来,代表性论文发表在Prog. Mater. Sci.、Adv. Mater. 、Adv. Funct. Mater.、J. Mater. Chem.、Chem. Mater.、Acta Mater.、J. Am. Ceram. Soc.、J. Eur. Ceram. Soc.、Carbon、Micropor. Mesopor. Mat.、Nanotech-nology、Scripta Mater.、J. Mater. Res.、Metall. Mater. Trans. A等期刊上。
引用本文:    
张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
ZHANG Huawei, LIU Yue, FAN Tongxiang. Progress and Prospect of Cast Heat-resistant Aluminum Alloy. Materials Reports, 2022, 36(2): 20120048-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120048  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20120048
1 Zhang S H. Auto Industry Research, 2003(3), 36 (in Chinese).
张少华. 汽车工业研究, 2003(3), 36.
2 Pan F S, Zhang D F. Aluminum alloy and its application, Chemical Industry Press, China, 2006 (in Chinese).
潘复生, 张丁非. 铝合金及应用, 化学工业出版社, 2006.
3 Srirangam P. Acta Materialia, 2014, 64, 185.
4 Schöbel M, Baumgartner G, Gerth S, et al. Acta Materialia, 2014, 81, 401.
5 Dai Q X. Metal material science, Chemical Industry Press, China, 2005 (in Chinese).
戴起勋. 金属材料学, 化学工业出版社, 2005.
6 Sui Y D. Study on the microstructural and elevated temperature properties of cast Al-Si-Cu-Ni-Mg alloys. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2016 (in Chinese).
隋育栋. Al-Si-Cu-Ni-Mg系铸造耐热铝合金组织及其高温性能研究. 博士学位论文, 上海交通大学, 2016.
7 Manasijevic S, Radisa R, Markovic S, et al. Intermetallics, 2011, 19(4), 486.
8 Liao H C, Li G J, Liu Q. Journal of Materials Engineering and Perfor-mance, 2019, 28(9), 5398.
9 Hernandez-Sandoval J, Garza-Elizondo G H, Samuel A M, et al. Mate-rials & Design, 2014, 58, 89.
10 Wei J G. Effect of alloying element content on microstructure and mecha-nical properties of heat resistant Al-Cu alloy. Master's Thesis, Harbin Institute of Technology, China, 2016 (in Chinese).
魏九高. 合金元素含量对耐热铝铜合金组织及性能的影响. 硕士学位论文, 哈尔滨工业大学, 2016.
11 Sui Y D, Wang Q D. Materials Reports A:Review Papers, 2015, 29(2), 9 (in Chinese).
隋育栋, 王渠东.材料导报:综述篇, 2015, 29(2), 9.
12 Yildirim M, Oezyuerek D. Materials & Design, 2013, 51, 767.
13 Chen J H, Costan E, Van Huis M, et al. Science, 2006, 312(5772), 416.
14 Abdulwahab M, Madugu I A, Yaro S A, et al. Materials & Design, 2011, 32(3), 1159.
15 Long W L, Cai Q Z, Chen L L, et al. Transactions of Nonferrous Metals Society of China, 2004, 14(2), 291.
16 Samuel A M, Gauthier J, Samuel F H. Metallurgical and Materials Tran-sactions A, 1996, 27(7), 1785.
17 Han Y M, Doty H W, Samuel F H, et al. Transactions of the American Foundry Society, 2008, 116, 79.
18 Toda H, Nishimura T, Uesugi K, et al. Acta Materialia, 2010, 58(6), 2014.
19 Feng M B, Chu D N, Ao B Q, et al. Automobile Technology Material, 2007, 12(10), 15 (in Chinese).
冯美斌, 褚东宁, 敖炳秋, 等. 汽车工艺与材料, 2007, 12(10), 15.
20 Shabestari S G, Keshavarz M, Hejazi M M. Journal of Alloys and Compounds, 2009, 477(1-2), 892.
21 Karamouz M, Azarbarmas M, Emamy M. Materials & Design, 2014, 59, 377.
22 Hu Y Y. Studies on novel Al-Si-Cu-Mn heat-resistant alloy used for automobile engine block. Master's Thesis, Southeast University, China, 2016 (in Chinese).
胡以云. 新型发动机缸体用耐热铝硅铜锰合金的研制. 硕士学位论文, 东南大学, 2016.
23 Yang H L. Study on microstructure and mechanical properties of new type heat-resistant Al-Cu-Mg-Ag alloys. Master's Thesis, Shanghai Jiao Tong University, China, 2003 (in Chinese).
杨海龙. 新型耐热铝合金Al-Cu-Mg-Ag系列的显微组织与力学性能研究. 硕士学位论文, 上海交通大学, 2003.
24 Liu G L. Research on optimization of multielement Al-Si-Cu alloy casting process factors and application in automobile engine cylinder. Ph.D. Thesis, Jiangsu University, China, 2013 (in Chinese).
刘光磊. 多元Al-Si-Cu合金铸造工艺参数优化及其在汽车发动机缸体应用的研究. 博士学位论文, 江苏大学, 2013.
25 Tiryakioglu M, Campbell J, Alexopoulos N D. Materials Science and Engineering: A, 2009, 506(1-2), 23.
26 Xia Q K, Yu R C, Li Y T, et al. Journal of Hunan Institute of Enginee-ring, 2006, 16(1), 27 (in Chinese).
夏卿坤, 余日成, 李云涛, 等. 湖南工程学院学报, 2006, 16(1), 27.
27 Xia Q K, Liu Z Y, Li Y T, et al. Materials for Mechanical Engineering, 2007, 31(4), 5 (in Chinese).
夏卿坤, 刘志义, 李云涛, 等. 机械工程材料, 2007, 31(4), 5.
28 Jia X L, Zhu X R, Chen D H, et al. Ordnance Material Science and Engineering, 2010, 32(2), 33 (in Chinese).
贾祥磊, 朱秀荣, 陈大辉, 等. 兵器材料科学与工程, 2010, 32(2), 33.
29 Bo H, Liu L B, Jin Z P. Journal of Alloys and Compounds, 2010, 490(1-2), 318.
30 Belov N A, Alabin A N, Matveeva I A. Journal of Alloys and Compounds, 2014, 583, 206.
31 Knipling K E, Dunand D C, Seidman D N. Metallurgical and Materials Transactions A, 2007, 38(10), 2552.
32 Liao H C, Tang Y Y, Suo X J, et al. Materials Science and Engineering: A, 2017, 699, 201.
33 Liu Q. Alloying and micro alloying on novel heat-resistant alloy used for automobile engine block. Master's Thesis, Southeast University, China, 2017 (in Chinese).
刘取. 新型发动机缸体用耐热铝合金的合金化和微合金化. 硕士学位论文, 东南大学, 2017.
34 Tang Y Y. Studies on high temperature fatigue behavior and mechanism of near-eutectic Al-Si-Cu-Mn heat-resistant alloy. Master's Thesis, Southeast University, China, 2018 (in Chinese).
唐云逸. 近共晶铝硅铜锰耐热合金高温疲劳行为及机理的研究. 硕士学位论文, 东南大学, 2018.
35 Li G J. Microstructure regulation of primary Mn rich phase and its effect on mechanical properties of heat resistant aluminum alloy. Master's Thesis, Southeast University, China, 2018 (in Chinese).
李广敬. 初生富Mn相的组织调控及其对耐热铝合金力学性能的影响. 硕士学位论文, 东南大学, 2018.
36 Suo X J, Liao H C, Hu Y Y, et al. Journal of Materials Engineering and Performance, 2018, 27(1-3), 1.
37 Shabestari S G. Materials Science and Engineering: A, 2004, 383, 289.
38 Qian Z. Study on high strength heat-resistant Al-Si piston alloys. Master's Thesis, Shandong University, China, 2009 (in Chinese).
钱钊. 高强耐热Al-Si活塞合金的研究. 硕士学位论文, 山东大学, 2009.
39 Li Y G, Yang Y, Wu Y Y, et al. Materials Science and Engineering: A, 2010, 527(26), 7132.
40 Yang Y, Yu K L, Li Y Y, et al. Materials & Design, 2012, 33, 220.
41 Wu Y Y, Song J G, Liu X F, et al. Foundry, 2006, 55(11), 1178 (in Chinese).
武玉英, 宋建岗, 刘相法, 等. 铸造, 2006, 55(11), 1178.
42 Shaha S K, Czerwinski F, Kasprzak W, et al. Materials Science and Engineering: A, 2016, 652(2), 353.
43 Xiao D H, Wang J N, Chen S P, et al. Journal of the Chinese Society of Rare Earths, 2003, 19(5), 80 (in Chinese).
肖代红, 王健农, 陈世朴, 等. 中国稀土学报, 2003, 19(5), 80.
44 Mukhopadhyay A K, Shiflet G J, Starke E A. Scripta Metallurgica et Materialia, 1990, 24(2), 307.
45 Xing P F, Gao B, Zhuang Y X, et al. Journal of Rare Earths, 2010, 28(6), 927.
46 Yao D M, Xia Y M, Qiu F, et al. Materials Science and Engineering: A, 2011, 528(3), 1463.
47 Zhao H L, Yao D M, Qiu F, et al. Journal of Alloys and Compounds, 2011, 509(5), 43.
48 Wang W M, Fan Z T, Dai Y C, et al. Materials Science and Engineering: A, 2014, 597, 237.
49 Mohamed A M A, Samuel F H, Kahtani S A. Materials Science and Engineering: A, 2012, 543, 22.
50 Wang G L, Wang Q D, Sui Y D. Special Casting Nonferrous Alloys, 2015, 35(2), 215 (in Chinese).
汪光亮, 王渠东, 隋育栋. 特种铸造及有色合金, 2015, 35(2), 215.
51 Qi H, Liu X Y, Liang S X, et al. Journal of Alloys and Compounds, 2016, 657, 318.
52 Shaha S K, Czerwinski F, Kasprzak W, et al. Metallurgical and Materials Transactions A, 2015, 46, 3063.
53 Shaha S K, Czerwinski F, Kasprzak W, et al. Materials Characterization, 2016, 47, 2396.
54 Meng F C, Wu Y Y, Hu K Q, et al. Materials, 2019, 12(16), 2506.
55 Yang Y Y, Zhong S Y, Chen Z, et al. Journal of Alloys and Compounds, 2015, 647, 63.
56 Feng J, Ye B, Zuo L J, et al. Materials Science and Engineering: A, 2017, 706, 27.
57 Li G J, Liao H C, Suo X J, et al. Materials Science and Engineering: A, 2018, 709, 90.
58 Li Y G, Yang Y, Wu Y Y, et al. Materials Science and Engineering: A, 2011, 528(13-14), 4427.
59 Li G J, Liao H C, Xu A Q. Materials Science and Engineering: A, 2018, 730, 36.
60 Zhang X H, Zhang W Z, Yuan Y P, et al. Materials Science and Engineering: A, 2017, 700, 25.
61 Jung J G, Lee J M, Cho Y H, et al. Journal of Alloys and Compounds, 2017, 693, 201.
62 Jung J G, Lee S H, Cho Y H, et al. Journal of Alloys and Compounds, 2017, 712, 277.
63 Han L N, Sui Y D, Wang Q D, et al. Journal of Alloys and Compounds, 2017, 695, 1566.
64 Zuo L J, Ye B, Feng J, et al. Journal of Alloys and Compounds, 2019, 791, 1015.
65 Sui Y D, Wang Q D, Wang G L, et al. Journal of Alloys and Compounds, 2015, 644, 228.
66 Gao T, Zhu X Z, Sun Q Q, et al. Journal of Alloys and Compounds, 2013, 567, 82.
67 Li R H, Zeng P, Zhang J D. Foundry, 2013, 62(8), 811 (in Chinese).
李荣华, 曾萍, 张继东. 铸造, 2013, 62(8), 811.
68 Ma X, Zhao Y F, Tian W J, et al. Scientific Reports, 2016, 6(1), 34919.
69 Yang H B, Tian S, Gao T, et al. Materials Science and Engineering: A, 2019, 763, 138121.
70 Zhang F, Guo Y P, Zhou W M. Material performance, Shanghai Jiaotong University Press, China, 2014 (in Chinese).
张帆, 郭益平, 周伟敏. 材料性能学, 上海交通大学出版社, 2014.
71 Jeong C Y. Materials Transactions, 2013, 54(4), 588.
72 Yao D M, Zhao W G, Zhao H L, et al. Scripta Materialia, 2009, 61(12), 1153.
73 Huang C W, Liang Y L, Yang M, et al. Heat Treatment of Metals, 2013, 38(2), 48 (in Chinese).
黄朝文, 梁益龙, 杨明, 等. 金属热处理, 2013, 38(2), 48.
[1] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[2] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[3] 卢祺, 黄锋, 郭逊. 合金化对Mg-Ni系合金储氢性能的影响:综述[J]. 材料导报, 2021, 35(9): 9033-9040.
[4] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[5] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[6] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[7] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[8] 朱诚意, 鲍远凯, 汪勇, 马江华, 李光强. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
[9] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[10] 李睿, 周军, 梁武, 张春波, 乌彦全. 热处理制度对TC17钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料导报, 2021, 35(20): 20057-20061.
[11] 王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
[12] 董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
[13] 任鑫, 窦春岳, 高志玉, 庄达, 齐鹏涛, 何维. 热处理数值模拟技术的研究进展[J]. 材料导报, 2021, 35(19): 19186-19194.
[14] 蹇守卫, 赵红晨, 王亮, 李宝栋, 高文斌, 黄伟超. 重度铜污染土壤制备轻集料的固化机理研究[J]. 材料导报, 2021, 35(18): 18104-18108.
[15] 宋扬, 刘丽华, 张中武. 钛微合金化低碳钢的研究进展[J]. 材料导报, 2021, 35(15): 15175-15182.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed