Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19186-19194    https://doi.org/10.11896/cldb.20060193
  金属与金属基复合材料 |
热处理数值模拟技术的研究进展
任鑫, 窦春岳, 高志玉, 庄达, 齐鹏涛, 何维
辽宁工程技术大学材料科学与工程学院,阜新 123000
Research Progress of Numerical Simulation in Heat Treatment
REN Xin, DOU Chunyue, GAO Zhiyu, ZHUANG Da, QI Pengtao, HE Wei
School of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
下载:  全 文 ( PDF ) ( 5481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 制造业的发展可提升一个国家的综合竞争力,其中金属材料发挥了重要作用。而热处理作为改善金属材料使用性能的重要基础工序,存在影响因素多、研发周期长的问题。因此,优化工艺,缩短周期,提高效率和质量是十分必要的。传统的热处理工艺,多凭经验而定,具有一定的盲目性、成本高和效率低等缺点。计算机与热处理技术的结合打破了这一瓶颈,使热处理过程“可视化”—可以观测到工艺参数对组织、性能的影响,使工艺优化有据可依,节省了大量能源及时间,缩短了研发周期,提升了生产效率。此外,还可实现对热处理相变机理的研究,深入分析相变对使用性能的影响。目前,在热处理模拟方面,应用较多的模拟方法主要有有限元法、蒙特卡罗法、元胞自动机法和相场法,它们在模拟中各有千秋。有限元法以耦合多场的优势侧重于探索热处理工艺参数的影响,目的是优化热处理工艺,解决工程实际应用问题。后面三种方法主要是针对相变机理的研究,其中蒙特卡罗法和元胞自动机法更多用来模拟相变过程中的形核位置及晶粒长大现象;相场法多模拟相变的介观形貌,探究相变的演变过程机理。
本文对这几种模拟方法在热处理方面的应用现状进行了总结介绍,并对比了这几种方法的优缺点,为研究人员选用模拟方法提供参考依据。重点分析了有限元法在热处理数值模拟中的应用,在此基础上对热处理数值模拟的未来发展进行了展望,指出基于有限元算法的跨尺度多场耦合集成计算将是未来发展方向之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任鑫
窦春岳
高志玉
庄达
齐鹏涛
何维
关键词:  热处理  数值模拟  有限元  多场耦合    
Abstract: The development of manufacturing industry can enhance the comprehensive competitiveness of a country, among which metal materials play an important role. As an important basic process to improve the performance of metal materials, heat treatment has the characteristics of many influencing factors and long research and development cycles. Therefore, it is very necessary to optimize the process, shorten the cycle time, and improve the efficiency and quality. The traditional heat treatment processes are mostly determined by experience, and have some shortcomings such as blindness, high cost and low efficiency. The combination of computer and heat treatment technology breaks this bottleneck, making the heat treatment process “visualized” —the influence of process parameters on the microstructure and performance can be observed, making the process optimization reliable, saving a lot of energy and time, shortening the research and development cycle, and improving the production efficiency. In addition, the mechanism of phase change in heat treatment can be studied, and the effect of phase change on performance can be deeply analyzed. At present, there are many simulation methods in heat treatment simulation, including Monte Carlo method, cellular automata method, phase field method and finite element method, which have their own merits in simulation. With the advantage of coupling multiple fields, finite element method focuses on the exploration of the influence content of heat treatment process parameters, with the purpose of optimizing the heat treatment process and solving the practical application problems in engineering. The last three methods are mainly for the study of phase transition mechanism, among which Monte Carlo method and cellular automata method are more used to simulate the nucleation position and grain growth phenomenon in the phase transition process; the phase field method is used to simulate the mesoscopic morphology of phase transition and explore the evolution mechanism of phase transition.
In this paper, the application status of these simulation methods in heat treatment is summarized, and the advantages and disadvantages of these methods are compared, so as to provide reference for the selection of simulation methods. The application of finite element method in numerical simulation of heat treatment is emphatically analyzed, and the future development of numerical simulation of heat treatment is prospected on the basis of this. It is pointed out that the multi-scale coupled integrated computation based on finite element algorithm will be one of the future development directions.
Key words:  heat treatment    numerical simulation    finite element    multi-field coupling
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TG151  
基金资助: 辽宁省博士科研启动基金资助项目(20170520151);辽宁省教育厅科学研究经费项目(LJ2020JCL021;LJ2020JCL027);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-16)
通讯作者:  zhiyugao@126.com   
作者简介:  任鑫,辽宁工程技术大学教授,硕士生导师。2005年7月,在南京理工大学获得材料学专业工学博士学位。以第一作者在国内外学术期刊上发表论文50余篇,主持参与课题十余项。研究工作主要围绕材料表面改性、材料腐蚀与防护等。
高志玉,辽宁工程技术大学,副教授,硕士生导师。2016年1月毕业于北京科技大学,材料科学与工程博士。主要从事金属材料强韧化、材料集成计算、基于材料数据的材料与工艺的优化设计等研究。在国内外学术期刊上发表论文30余篇。
引用本文:    
任鑫, 窦春岳, 高志玉, 庄达, 齐鹏涛, 何维. 热处理数值模拟技术的研究进展[J]. 材料导报, 2021, 35(19): 19186-19194.
REN Xin, DOU Chunyue, GAO Zhiyu, ZHUANG Da, QI Pengtao, HE Wei. Research Progress of Numerical Simulation in Heat Treatment. Materials Reports, 2021, 35(19): 19186-19194.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060193  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19186
1 Integrated Thematic Group on Materials Science and Technology. In Research on Science and Technology Development in China in 2020. Beijing, China, 2004, pp. 168(in Chinese).
材料科学和技术综合专题组. 2020年中国科学和技术发展研究暨科学家讨论会. 北京, 2004, pp. 168.
2 Miao G L. Hunan Agricultural Machinery,2015,42(11),23(in Chinese).
苗高蕾. 时代农机, 2015, 42(11),23.
3 Zhu Y. Fine Chemical Intermediates, 2014, 10(11),1(in Chinese).
朱英. 化工中间体, 2014, 10(11),1.
4 Li H P, He L F. Numerical Simulation technology of heat treatment process, Chemical Industry Press, 2017(in Chinese).
李辉平, 贺连芳. 热处理工艺数值模拟技术, 化学工业出版社, 2017.
5 National Research Council. Integrated Computational Materials Enginee-ring: A Transformational Discipline for Improved Competitiveness and National Security,The National Academies Press, Washington, DC, 2008.
6 Zhao J C. Chinese Journal of Nature, 2014, 36(2), 89(in Chinese).
赵继成.自然杂志, 2014, 36(2), 89.
7 Lu N N. Phase field simulation of multiple phase transitions during solidification and eutectoid transformation of Fe-C binary alloy. Master's Thesis, Lanzhou University of Technology, China, 2019(in Chinese).
路妮妮. Fe-C二元合金凝固与共析转变多次相变的相场法模拟研究. 硕士学位论文, 兰州理工大学, 2019.
8 Jemir H G, Pan J S, Gu J F. The Magazine on Equipment Machinery, 2016(4),59(in Chinese).
杰米尔·哈坎·吉尔, 潘健生, 顾剑锋. 装备机械, 2016(4),59.
9 Dossett J L, Totten G E. ASM Handbook(Volume 4B): Steel heat treating technologies, ASM International, 2014.
10 Pan W P. Numerical simulation and experimental verification of heat treatment process for shaft forgings. Master's Thesis, Shandong University, China, 2018(in Chinese).
潘伟平. 轴类锻件热处理工艺的数值模拟与试验验证. 硕士学位论文, 山东大学, 2018.
11 Jin M, Liu N, Liu A J, et al. Heat Treatment, 2019, 34(1),23(in Chinese).
金妙,刘宁,刘爱军, 等. 热处理, 2019, 34(1),23.
12 Ju D Y. Angang Technology, 2010(6),5(in Chinese).
巨东英. 鞍钢技术, 2010(6), 5.
13 Zhang Q D, Lin X, Liu J Y, et al. Acta Metallurgica Sinica, 2019, 55(12),1569(in Chinese).
张清东, 林潇, 刘吉阳, 等.金属学报, 2019, 55(12),1569.
14 Xu G C. Heat Treatment Technology and Equipment, 2015, 36(4),43(in Chinese).
徐广晨. 热处理技术与装备, 2015, 36(4),43.
15 Jiang Z Q. Numerical simulation of heat treatment process of TBM disc hob and research on material properties of cutter ring. Master's Thesis, Zhengzhou University, China, 2016(in Chinese).
江志强. TBM盘形滚刀热处理工艺的数值模拟与刀圈材料性能研究. 硕士学位论文, 郑州大学, 2016.
16 Jiao M. Numerical simulation and experimental study of the heat treatment process of 30CrMnSiNi2A steel. Master's Thesis, Jilin University, China, 2017(in Chinese).
焦明. 30CrMnSiNi2A钢热处理过程的数值模拟及实验研究. 硕士学位论文, 吉林大学, 2017.
17 Pan W P, Chen L, Liu D M. Heat Treatment Technology and Equipment, 2017, 38(5),67(in Chinese).
潘伟平, 陈磊, 刘东明. 热处理技术与装备, 2017, 38(5), 67.
18 Eck S, Prevedel P, Marsoner S, et al. Journal of Materials Engineering & Performance, 2014, 23(4),1288.
19 Krakhmalev P, Yadroitsava I, Fredriksson G, et al. Materials & Design, 2015, 87,380.
20 Deng X, Ju D. Physics Procedia, 2013, 50,368.
21 Eser A, Broeckmann C, Simsir C. Computational Materials Science, 2016, 113(2), 292.
22 Wang J. Heat treatment process optimization and thermal stress numerical simulation of heavy-duty locomotive frame. Master's Thesis, Northeastern University, China, 2015(in Chinese).
王吉. 重载机车构架热处理工艺优化及热应力数值模拟.硕士学位论文, 东北大学, 2015.
23 Ge G N, Gao S, Zhang L J, et al. Hot Working Technology, 2016, 45(16),216(in Chinese).
葛光男, 高升, 张立娟, 等. 热加工工艺, 2016, 45(16), 216.
24 Zhang Q X, Zhou W H, Liu D, et al. Metal Materials and Metallurgy Engineering, 2017(3), 25(in Chinese).
张青学, 周文浩, 刘丹, 等. 金属材料与冶金工程, 2017(3),25.
25 Wang H, Liu Y P, Cheng W, et al. Heat Treatment of Metals, 2018, 43(3),216(in Chinese).
汪衡, 刘俞平, 程伟, 等. 金属热处理, 2018, 43(3), 216.
26 Hou Y H, Liu Z Y, Li Y T, et al. Rare Metal Materials and Enginee-ring, 2010, 39(8),1435(in Chinese).
侯延辉, 刘志义, 李云涛, 等. 稀有金属材料与工程, 2010, 39(8),1435.
27 Li C, Wan M, Jin X, et al. Journal of Plasticity Engineering, 2010, 17(5),61(in Chinese).
李超, 万敏, 金兴, 等. 塑性工程学报, 2010, 17(5),61.
28 Li J, Liu J, Cui Z. Materials and Design, 2014, 56, 889.
29 Xing L. Simulation of austenitic—ferrite phase transition of low carbon steel based on cellular automata method. Master's Thesis, Huazhong University of Science and Technology, China, 2018(in Chinese).
邢路. 基于元胞自动机法的低碳钢奥氏体—铁素体相变模拟. 硕士学位论文, 华中科技大学, 2018.
30 Tong M M, Li D Z, Li Y Y, et al. Metallurgical and Materials Transactions A, 2002(33A),3111.
31 Song S T. Phase field simulation of isothermal transition from austenite to ferrite in low carbon steel. Master's Thesis, Shandong University, China, 2008(in Chinese).
宋述同. 低碳钢中奥氏体向铁素体等温转变的相场法模拟. 硕士学位论文, 山东大学, 2008.
32 Haghighat S M H, Taheri A K. Journal of Materials Processing Technology, 2008, 195(1-3), 195.
33 Xin Q B. Computer simulation of material forming, Metallurgical Industry Press, China, 2013(in Chinese).
辛啟斌. 材料成形计算机模拟,冶金工业出版社, 2013.
34 Kumar M, Sasikumar R, Nair P K. Acta Materialia, 1998, 46(17), 6291.
35 Varma M R, Sasikumar R, Pillai S G K, et al. Bulletin of Materials Science, 2001, 3,305.
36 Xiao N, Tong M, Lan Y, et al. Acta Materialia, 2006, 54(5),1265.
37 Zheng C, Raabe D, Li D. Acta Materialia, 2012, 60(12),4768.
38 Chen L Q. Introduction to the Phase-Field Method of Microstructure Evolution, Wiley-VCH Verlag GmbH & Co. KGaA, 2005.
39 Heo T W, Bhattacharyya S, Chen L Q. Solid State Phenomena, 2011, 172-174,1084.
40 Pariser G, Schsffnit P, Steinbach I, et al. Steel Research,2001,72,345.
41 Chen J H, David J, Brow S M. Acta Materialia, 2006,54,11.
42 Mecozzi M G, Sietsma J,Van der Zwaag S. Acta Materialia, 2006,54, 1431.
43 Arif T T, Qin R S. Computational Materials Science, 2013, 77,230.
44 Düsing M, Mahnken R. Computational Materials Science, 2016, 111, 91.
45 Düsing M, Mahnken R. International Journal of Solids & Structures, 2018, 135(5), 172.
46 Basak A, Levitas V I. Computer Methods in Applied Mechanics & Engineering, 2019, 343(1), 368.
47 Shchyglo O, Du G, Engels J K, et al. Acta Materialia, 2019, 175,415.
48 Liu Q Q. Phase field modeling and simulation of second phase particle precipitation behavior in low carbon steel. Master's Thesis, Shandong University, China, 2012(in Chinese).
刘千千. 低碳钢中第二相粒子析出行为的相场法模型及其模拟研究. 硕士学位论文, 山东大学, 2012.
49 Pietrzyk M, Madej L. Steel Research International, 2017, 88(10), 1700193.
50 Chen H. 300M experimental study and numerical simulation of grain size change of steel heat treatment. Master's Thesis, Yanshan University, China, 2016(in Chinese).
陈华. 300M钢热处理晶粒度变化的实验研究及数值模拟.硕士学位论文, 燕山大学, 2016.
51 Lin W Q. Grain size analysis and tissue genetics research based on Deform metal forging and heat treatment. Master's Thesis, South China University of Technology, China, 2012(in Chinese).
林伟强. 基于Deform金属锻造和热处理的晶粒度分析及组织遗传研究. 硕士学位论文, 华南理工大学, 2012.
52 Hou X Q. Numerical simulation study of online quench heat treatment of rail waste heat. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2013(in Chinese).
侯先芹. 钢轨在线余热淬火热处理的数值模拟研究. 硕士学位论文, 内蒙古科技大学, 2013.
53 Wang G, Liu Z C, Chang X D, et al. Transactions of Materials and Heat Treatment, 2016(6), 241(in Chinese).
王葛, 刘智超, 常旭东, 等. 材料热处理学报, 2016(6),241.
54 Zhao W. Numerical simulation of post-heat treatment process of large diameter round steel for petroleum. Master's Thesis, Donghua University, China, 2017(in Chinese).
赵雯. 石油管用大直径圆钢轧后热处理工艺数值模拟研究. 硕士学位论文, 东华大学, 2017.
55 Zhang C S. Numerical simulation of size change and structure evolution in thermal processing of large complex components. Master's Thesis, Harbin Institute of Technology, China, 2010(in Chinese).
张程菘. 大型复杂构件热加工过程尺寸变化与组织演变数值模拟. 硕士学位论文, 哈尔滨工业大学, 2010.
56 Zhang S Z, Wang W R, Li Y L, et al. Journal of Zhejiang University (Engineering Science), 2013, 47(3),535(in Chinese).
张世珍, 王维锐, 李玉良, 等. 浙江大学学报(工学版), 2013, 47(3),535.
57 Wang D P. Hot Working Technology, 2016, 45(22),230(in Chinese).
王丹萍. 热加工工艺, 2016, 45(22), 230.
58 Wang H Q. Computer simulation of heat treatment deformation of stainless steel impeller. Master's Thesis, Shenyang University of Technology, China, 2016(in Chinese).
王好强. 不锈钢叶轮热处理变形的计算机模拟. 硕士学位论文, 沈阳工业大学, 2016.
59 Deng X, Ju D Y. Physics Procedia, 2013, 50, 368.
60 Zhang W. Numerical simulation of the tempering process of Cr12MoV steel based on multi-field coupling. Master's Thesis, Tianjin University of Technology and Education, China, 2015(in Chinese).
张伟. 基于多场耦合的Cr12MoV钢调质过程数值模拟. 硕士学位论文, 天津职业技术师范大学, 2015.
61 Cao Q X, Ma Q X, Han J T. Journal of Plasticity Engineering, 1994, 1(1),14(in Chinese).
曹起骧, 马庆贤, 韩静涛. 塑性工程学报, 1994, 1(1),14.
62 Deng X, Ju D Y. Physics Procedia, 2013, 50,368.
63 Sun Y L, Obasi G, Hamelin C J, et al. Journal of Materials Processing Technology, 2019, 270(8), 118.
64 Fu J, Li Y T, Qi H P. Advanced Materials Research,2011,317-319,19.
65 Yang S M, Tao W Q. Heat Transfer. 4th edition, Higher Education Press, China, 2006(in Chinese).
杨世铭, 陶文铨. 传热学. 第4版, 高等教育出版社, 2006.
66 Chen J K. Numerical simulation of the final heat treatment process of Cr5 forged steel support roller. Master's Thesis, Yanshan University, China, 2014(in Chinese).
陈建坤. Cr5锻钢支承辊最终热处理过程数值模拟. 硕士学位论文, 燕山大学, 2014.
67 Xu J. Numerical simulation of heat treatment process of 42CrMo steel and determination of heat transfer coefficient. Master's Thesis, Dalian Jiaotong University, China, 2013(in Chinese).
许瑾. 42CrMo钢热处理过程数值模拟及换热系数的测定. 硕士学位论文, 大连交通大学, 2013.
68 Heat Treatment Society, Chinese Society of Mechanical Engineering. Heat treatment handbook. Vol. 1, process basis, China Machine Press, China, 2012(in Chinese).
中国机械工程学会热处理学会. 热处理手册. 第1卷,工艺基础, 机械工业出版社, 2012.
69 Hu J J. Application course of Deform-3D plastic forming CAE, Peking University Press, China, 2011(in Chinese).
胡建军. DEFORM-3D塑性成形CAE应用教程, 北京大学出版社, 2011.
70 Chen Z Z, Lan D N. Die steel manual, Metallurgical Industry Press, China, 2002(in Chinese).
陈再枝, 蓝德年. 模具钢手册, 冶金工业出版社, 2002.
[1] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[2] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[3] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[4] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[5] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[6] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[7] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[8] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[9] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[10] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[11] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[12] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[13] 冯振宇, 范保鑫, 王纳斯丹, 韩雪飞, 李翰, 吴敬涛. 基于UMATHT子程序的玻璃纤维/乙烯基酯热响应数值模拟[J]. 材料导报, 2021, 35(2): 2191-2198.
[14] 王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
[15] 董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed