Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20057-20061    https://doi.org/10.11896/cldb.20080225
  金属与金属基复合材料 |
热处理制度对TC17钛合金线性摩擦焊接头组织及力学性能的影响
李睿, 周军, 梁武, 张春波, 乌彦全
哈尔滨焊接研究院有限公司,黑龙江省先进摩擦焊接技术与装备重点实验室,哈尔滨 150028
Effect of Heat Treatment System on Microstructure and Mechanical Properties of Linear Friction Welded Joint of TC17 Titanium Alloy
LI Rui, ZHOU Jun, LIANG Wu, ZHANG Chunbo, WU Yanquan
Heilongjiang Provincial Key Laboratory of Advanced Friction Welding Technology and Equipment, Harbin Welding Institute Limited Company, Harbin 150028, China
下载:  全 文 ( PDF ) ( 7138KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作针对航空发动机整体叶盘常用材料TC17钛合金进行线性摩擦焊试验研究,主要通过OM、SEM、显微硬度和常温拉伸试验方法对不同热处理状态下接头组织的形貌和力学性能进行分析。研究发现,由于焊接过程中复杂的热力耦合作用,接头组织形成了典型的焊缝区、热机影响区和热影响区,且焊接接头性能显著降低;而经过焊后热处理,由于亚稳定β相和亚稳定α相分解,析出弥散分布的针状α相使接头性能大幅提高,常温拉伸都断于母材处;并且弥散分布的针状α相的强化效果与热处理温度密切相关,通过合理热处理制度可以实现TC17线性摩擦焊接头强度和塑性的合理匹配,提高接头的综合性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李睿
周军
梁武
张春波
乌彦全
关键词:  焊后热处理  TC17钛合金  线性摩擦焊  组织分析  力学性能    
Abstract: In this paper, the linear friction welding test of TC17 titanium alloy, a common material of integral blade disc of aeroengine, was conducted. The microstructure morphology and mechanical properties of joints under different heat treatment conditions were analyzed by OM, SEM, microhardness and tensile test at room temperature. It is found that due to the complex thermal coupling effect in the welding process, the typical microstructure of the welding seam area, the thermal engine influence area and the thermal influence area are formed, and the welding joint perfor-mance is significantly reduced. After heat treatment after welding, thanks to the decomposition of the metastable β phase and the metastable α phase, the diffusely distributed needle-α phase was separated out, which greatly improved the joint performance. Moreover, the diffusely distributed needle-beam strengthening effect is closely related to the heat treatment temperature. The reasonable match between the strength and plasti-city of TC17 linear friction welded joint can be achieved through a reasonable heat treatment system, thus improving the joint’s comprehensive performance.
Key words:  post-weld heat treatment    TC17 titanium alloy    linear friction welding    microstructure analysis    mechanical properties
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG453  
基金资助: 国家科技重大专项(2018ZX04010001);黑龙江省科技计划省院科技合作项目(YS20A19)
通讯作者:  mch_zhoujun@126.com   
作者简介:  李睿,1995年出生,硕士,毕业于哈尔滨焊接研究院有限公司,主要从事线性摩擦焊接工艺研究。
周军,1963年出生,黑龙江省先进摩擦焊接技术与装备重点实验室主任,研究员,博士生导师,主要从事摩擦焊接装备及焊接工艺研究。国务院政府特殊津贴专家,机械科学研究总院复合型专家,机械工程学会高级会员,中国机械工程学会焊接分会压力焊专业委员会副主任,发表文章30多篇,申报专利20余项。
引用本文:    
李睿, 周军, 梁武, 张春波, 乌彦全. 热处理制度对TC17钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料导报, 2021, 35(20): 20057-20061.
LI Rui, ZHOU Jun, LIANG Wu, ZHANG Chunbo, WU Yanquan. Effect of Heat Treatment System on Microstructure and Mechanical Properties of Linear Friction Welded Joint of TC17 Titanium Alloy. Materials Reports, 2021, 35(20): 20057-20061.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080225  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20057
1 Liu J F. Aviation Science and Technology,1998(6),23(in Chinese).
刘家富.航空科学技术,1998(6),23.
2 Chen G. Aero Engine,1999(1),1(in Chinese).
陈光.航空发动机,1999(1),1.
3 Huang C F. Modern Components,2005(4),96(in Chinese).
黄春峰.现代零部件,2005(4),96.
4 Shi Y Y, Duan J H, Zhang J F, et al. Aerospace Manufacturing Technology,2012,399(3),26(in Chinese).
史耀耀,段继豪,张军锋,等.航空制造技术,2012,399(3),26.
5 Guo D L. Aviation Manufacturing Technology,2014,464(20),62(in Chinese).
郭德伦.航空制造技术,2014,464(20),62.
6 Zhou J, Zhang C B, Du M, et al. Welding,2017(6),1(in Chinese).
周军,张春波,杜淼,等.焊接,2017(6),1.
7 Yao X Z, Hu Z. Aerospace Manufacturing Technology,2011(16),33(in Chinese).
姚希珍,胡泽.航空制造技术,2011(16),33.
8 Lang B, Zhang T C, Tao J, et al. Aviation Manufacturing Technology,2012(13),140(in Chinese).
郎波,张田仓,陶军,等.航空制造技术,2012(13),140.
9 Ji Y J, Zhang T C, Li X H. Aviation Manufacturing Technology,2011(8),66(in Chinese).
季亚娟,张田仓,李晓红.航空制造技术,2011(8),66.
10 Chen Z, Zhang T C, Li J. Welding,2013(5),54(in Chinese).
陈正,张田仓,李菊.焊接,2013(5),54.
11 Ji Y J, Liu Y B, Zhang T C, et al. Transactions of the China Welding Institution,2012,33(10),109(in Chinese).
季亚娟,刘燕冰,张田仓,等.焊接学报,2012,33(10),109.
12 Zhang C C, Huang J H, Zhang T C, et al. Materials Engineering,2011(11),80(in Chinese).
张传臣,黄继华,张田仓,等.材料工程,2011(11),80.
13 Zhao Pengkang, Fu Li. Materials Science & Engineering A,2015,621,149.
14 Ji Y J, Zhang T C, Zhang L F, et al. Transactions of the China Welding Institution,2019,40(9),156(in Chinese).
季亚娟,张田仓,张连锋,等.焊接学报,2019,40(9),156.
15 Li W Y, Ma T, Yang S. Advanced Engineering Materials,2010,12(1-2),35.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[10] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[11] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[12] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[13] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[14] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[15] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed