Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20100018-10    https://doi.org/10.11896/cldb.20100018
  金属与金属基复合材料 |
脉冲电流在镁合金加工中的应用进展
徐志超1,*, 吴涛1, 郭学锋1,2, 杨文朋1, 樊建峰3, 肖思宇1
1 河南理工大学材料科学与工程学院,河南 焦作 454003
2 河南省高性能轻金属材料及其数值模拟国际联合实验室,河南 焦作 454003
3 新材料界面科学与工程教育部重点实验室,太原 030024
Application Progress of Pulsed Electric Current in Magnesium Alloy Processing
XU Zhichao1,*, WU Tao1, GUO Xuefeng1,2, YANG Wenpeng1, FAN Jianfeng3, XIAO Siyu1
1 Department of Material Science & Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
2 International Laboratory of High Performance Light Metal Materials and Numerical Simulation of Henan, Jiaozuo 454003, Henan, China
3 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 13965KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金作为最轻的金属结构材料,具有比重轻、比强度高、电磁屏蔽性能好、抗震性好、易加工、可回收利用以及生物相容性和可降解性良好等特点,在数码、交通和生物医用领域有广泛的应用前景。然而,镁的晶体结构为密排六方结构,在室温下可启动的滑移系少,塑性变形能力较差,这成为限制其广泛应用的主要原因。
近年来,关于改善合金加工性能的研究已经广泛开展。研究较多的是通过对塑性加工工艺进行优化来提高合金的成形以及综合力学性能,如大塑性变形、半固态加工、电辅助成形等。其中,电辅助成形是利用电塑性效应,提高合金在加工过程中的塑性,降低变形抗力,同时还能有效节约能源,是实现难变形材料精准成形、提高材料综合性能的绿色加工技术。
本文对脉冲电流在镁合金加工中的应用进行了综述,系统探讨了当前变形镁合金的加工方法与力学性能,分析了当前制约变形镁合金发展的因素,重点讨论了电塑性效应的研究现状,总结了国内外电塑性效应在镁合金加工中的研究现状,举例说明了脉冲电流在镁合金轧制、冲压等工艺中的应用。最后,从电塑性效应、止裂效应、极性效应三方面出发,重点综述了脉冲电流在金属塑性加工中的微观作用机理,并对脉冲电流在镁合金中的加工应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐志超
吴涛
郭学锋
杨文朋
樊建峰
肖思宇
关键词:  镁合金  电塑性效应  塑性加工  极性效应  止裂效应    
Abstract: Magnesium alloy is one of the lightest materials exhibiting a low density, high specific strength, good electromagnetic shielding performance, good seismic resistance, easy processing, recyclability, and good biocompatibility and degradability. They have wide application prospects in digital, transportation and biomedical fields. However, magnesium alloys have dense row hexagonal structures with a few initiable slip systems at room temperature and poor plastic deformability, which is the main reason for the limitation on wide applications.
Several processing strategies have been recently investigated to improve the engineering applicability of magnesium alloys. Mechanical properties of the alloys have been enhanced via optimization of plastic processing, such as large plastic deformation, semi-solid state processing and electro-assisted forming.Through the electro-plastic effect, electro-assisted forming can improve the alloys' plasticity, reduce the deformation resistance during processing and save energy. It is a green processing technology that provides precise forming of materials which is difficult to deform and improves their comprehensive performance.
This paper introduces pulsed electric current in magnesium alloy processing, systematically discusses existing processing methods and mechanical properties of deformed magnesium alloys, and analyzes current factors that restrict the development of deformed magnesium alloys. Besides, we focus on the research progress of theelectro-plastic effect, summarize existing research on the electro-plastic effect in magnesium alloy processing at a global level, and give examples to illustrate the application of pulsed electric current in magnesium alloy rolling and punching. The underlying microscopic action mechanism of pulsed electric current in the processing of metal plasticity is reviewed from three aspects: electro-plastic effect, anti-cracking effect and polarity effect. Finally, we provide further perspectives on the application of pulsed electric current in magnesium alloy processing.
Key words:  magnesium alloy    electro-plastic effect    plastic processing    polarity effect    crack arrest effect
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TG391.1  
基金资助: 国家自然科学基金(52103290);河南省自然科学基金青年基金(212300410148);河南省重点研发与推广专项(212102210439);新材料界面科学与工程教育部重点实验室开放基金(KLISEAM201901);河南省高校基本科研业务费专项资金资助(NSFRF210333);河南理工大学青年骨干教师资助计划(2020XQG-16);河南理工大学自然科学基金(B2019-42)
通讯作者:  * xzc@hpu.edu.cn   
作者简介:  徐志超,河南理工大学材料科学与工程学院讲师。2018年5月毕业于昆明理工大学,获材料学博士学位,同年加入河南理工大学材料科学与工程学院工作至今。主要从事轻合金的凝固与加工研究,重点研究稀土镁合金的大塑性变形以及合金的非平衡凝固。在国内外重要期刊发表文章20余篇。
引用本文:    
徐志超, 吴涛, 郭学锋, 杨文朋, 樊建峰, 肖思宇. 脉冲电流在镁合金加工中的应用进展[J]. 材料导报, 2022, 36(21): 20100018-10.
XU Zhichao, WU Tao, GUO Xuefeng, YANG Wenpeng, FAN Jianfeng, XIAO Siyu. Application Progress of Pulsed Electric Current in Magnesium Alloy Processing. Materials Reports, 2022, 36(21): 20100018-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100018  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20100018
1 Zhang J H, Liu S, Wu R Z, et al. Journal of Magnesium & Alloys, 2018, 6, 277.
2 Liu D, Yang D, Li X, et al.Journal of Materials Research and Technology, 2019, 8(1), 1538.
3 Wu R, Yan Y, Wang G, et al.International Materials Reviews, 2015, 60(2), 65.
4 Yu H, Li C, Xin Y, et al.Acta Materialia, 2017, 128(128), 313.
5 Suh B, Shim M, Shin K, et al.Scripta Materialia, 2014, 1, 84.
6 Guo X, Remennik S, Xu C, et al.Materials Science & Engineering A, 2008, 473(1-2), 266.
7 Li K N, Zhang Y. B, Zeng Q, et al.Materials Science & Engineering, 2019, 751(5), 283.
8 Basha D A, Sahara R, Somekawa H, et al.Scripta Materialia, 2016, 124, 169.
9 Shah S S A, Wu D, Wang W, et al.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2017, 702, 153.
10 Kwak T Y, Kim W J.Journal of Materials Science & Technology, 2017, 33(9),919.
11 Huang Y, Wang Y, Meng X, et al.Journal of Materials Processing Technology, 2017, 249, 331.
12 Yang J Y, Kim W J.Journal of Materials Research and Technology, 2019, 8(2), 2316.
13 Kim Y M, Mendis C L, Sasaski T, et al.Scripta Materialia, 2017, 136, 41.
14 Sun Y F. Research on production process, microstructure and properties of high performance AZ31 magnesium alloy sheet. Master's Thesis, Nor-theastern University, China, 2018 (in Chinese).
孙亚飞. 高性能AZ31镁合金薄板生产工艺及组织性能的研究. 硕士学位论文, 东北大学, 2008.
15 Bae D, Lee M H, Kim K T, et al.Journal of Alloys and Compounds, 2002, 342(1), 445.
16 Liu L, Chen X, Wang J, et al.Journal of Materials Science & Technology, 2019, 35(6), 1074.
17 Xu B, Sun J, Yang Z, et al.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2020, 780(7), 139191.
18 Gu X, Zheng Y, Cheng Y, et al.Biomaterials, 2009, 30(4), 484.
19 Zhang S, Zhang X, Zhao C, et al.Acta Biomaterialia, 2010, 6(2), 626.
20 Jiang H S, Qiao X G, Xu C, et al.Materials & Design, 2016, 108(10), 391.
21 Hao J, Zhang J, Xu C, et al.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2018, 735(9), 99.
22 Itoi T, Inazawa T, Yamasaki M, et al. Materials Science and Enginee-ring: A, 2013, 560, 216.
23 Wang J, Gao S, Song P, et al.Journal of Alloys and Compounds, 2011, 509(34), 8567.
24 Yan K, Sun J, Liu H, et al.Materials Letters, 2019, 242(5), 87.
25 Eddahbi M, Valle J A D, Perez-Prado M T, et al. Materials Science & Engineering A, 2005, 410(11), 308.
26 Liao H, Tang G, Jiang Y, et al.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2011, 529, 138.
27 Troitskii O A, Likhtman V I. Soviet Physics Doklady, 1963, 8, 91.
28 Guan L. Study on deformation mechanism, microstructure and properties of AZ31 magnesium alloy by electroplastic rolling. Ph.D. Thesis, Tsinghua University, China, 2010 (inChinese).
官磊. 电致塑性轧制AZ31镁合金的变形机制及其组织和性能研究. 博士学位论文, 清华大学, 2010.
29 Conrad H, Sprecher A F, Cao W D, et al. JOM: The Journal of the Minerals, Metals & Materials Society, 1990, 42(9), 28.
30 Liu X, Lan S, Ni J.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2013, 582(10), 211.
31 Liu K. Study on the effect of pulse current on the plastic deformation behavior of AZ31b magnesium alloy sheet and its mechanism. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2018 (in chinese).
刘凯. 脉冲电流对AZ31b镁合金板料塑性变形行为的影响及其机理研究. 博士学位论文, 上海交通大学, 2018.
32 Ruszkiewicz B J, Grimm T J, Ragai I, et al. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2017, 139(11), 110801.
33 Roschupkin A M, Bataronov I L. Russian Physics Journal, 1996, 39(3), 230.
34 Pohjonen A, Parviainen S, Muranaka T, et al.Journal of Applied Physics, 2013, 114(3), 513.
35 Shi C C, Zhang K F, Lu Z, et al.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2019, 747, 98.
36 Conrad H.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2000, 287(2), 276.
37 Kim M J, Lee K, Oh K H, et al.Scripta Materialia, 2014, 75,58.
38 Guan L, Tang G, Chu P K. Journal of Materials Research, 2010, 25(7), 1215.
39 Molotskii M, Fleurov V.Physical Review B, 1995, 52(22), 15829.
40 Okazaki K, Kagawa M, Conrad H.Materials Science and Engineering, 1980, 45(2), 109.
41 Wang X, Xu J, Shan D, et al.International Journal of Plasticity, 2016, 85, 230.
42 Conrad H, Guo Z, Sprecher A F. Scripta Metallurgica, 1989, 23(6), 821.
43 Conrad H, Karam N, Mannan S L. Scripta Metallurgica, 1984, 18(3), 275.
44 Xu Z H, Tang G, Tian S, et al.Journal of Materials Processing Technology, 2007, 182(1), 128.
45 Zhang D, To S, Zhu Y, et al.Journal of Surface Engineered Materials and Advanced Technology, 2012, 2(1), 16.
46 Jiang Y, Tang G, Shek C H, et al. Acta Materialia, 2009, 57(16), 4797.
47 Liu Y, Wang L, Feng F, et al.Advanced Materials Research, 2012, 509,56.
48 Zhao S, Zhang R, Li X, et al.Nature Materials, 2021, 2(40), 468.
49 Chang J H, Hsu F Y, Liao M J, et al. Applied Surface Science, 2007, 253(16), 6829.
50 Liao X, Zhai Q, Luo J, et al.Acta Materialia, 2007, 55(9), 3103.
51 Mori K, Maki S, Tanaka Y.CIRP Annals, 2005, 54(1), 209.
52 Sun S D. Basic research on application of high energy electric pulse coupling heating rolling of AZ31 magnesium alloy sheet. Master's Thesis, Tsinghua University, China, 2013 (in Chinese).
孙是丁. 高能电脉冲耦合加温轧制AZ31镁合金薄板的应用基础研究. 硕士学位论文, 清华大学, 2013.
53 Li X, Tang G, Kuang J, et al.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2014, 612,406.
54 Li X, Li X, Ye Y, et al.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2019, 742(1), 722.
55 Tian H Y, Tang G Y, Ding F, et al.Nonferrous Metals(China), 2007, 59(2), 10.
56 Zhu R, Tang G.Materials Science and Technology, 2017, 33(5), 546.
57 Lu Y, Qu T, Zeng P, et al.Journal of Materials Science, 2010, 45(13), 3514.
58 Yan F Y, Huang W, Yang Q Y, et al. Forging Technology, 2010, 35(2), 39 (in Chinese).
阎峰云, 黄旺, 杨群英, 等.锻压技术, 2010, 35(2), 39.
59 Jiang Y, Tang G, Shek C, et al.Journal of Alloys and Compounds, 2011, 509(11), 4308.
60 Jiang Y, Guan L, Tang G, et al.Journal of Alloys and Compounds, 2015, 626, 297.
61 Wang S N. Effect of electric pulse on stamping and corrosion properties of AZ31 magnesium alloy. Master's Thesis, Tsinghua University, China, 2013 (in Chinese).
王少楠. 电脉冲对AZ31镁合金冲压性能和腐蚀性能的影响.硕士学位论文, 清华大学, 2009.
62 Xu C, Li Y N, Rao X H. Transactions of Nonferrous Metals Society of China, 2014, 24(12), 3777.
63 Kuang J, Li X, Zhang R, et al.Materials & Design, 2016, 100(7), 204.
64 Li X, Li X, Ye Y, et al.Materials Science & Engineering : A, 2019, 742(1), 722.
65 Kim W, Yeom K H, Thien N T, et al. Cirp Annals-Manufacturing Technology, 2014, 63(1), 273.
66 Xie H Y, Dong X H , Ai Z Q, et al. International Journal of Advanced Manufacturing Technology, 2016, 86 (1), 1063.
67 Xie H, Wang Q, Liu K, et al.Journal of Materials Processing Technology, 2015, 219, 321.
68 Xie H, Liu K, Wang Q, et al.Journal of Shanghai Jiaotong University (Science), 2016, 21(5), 557.
69 Antolovich S D, Conrad H. Materials and Manufacturing Processes, 2004, 19(4), 587.
70 Troitskii O A, Spitsyn V I, Sokolov N V, et al.Physica Status Solidi (a), 1979, 52(1), 85.
71 Li C, Zhang K, Jiang S, et al.Materials & Design, 2012, 34, 170.
72 Li C, Zhang K, Jiang S, et al.Acta Metallurgica Sinica, 2012, 2, 153.
73 Hosoi A, Nagahama T, Ju Y.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2012, 533, 38.
74 Song H, Wang Z.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2008, 490(1), 1.
75 Ren X, Wang Z, Fang X, et al.Materials & Design, 2020, 188, 108428.
76 Liu T J C. Theoretical and Applied Fracture Mechanics, 2008, 49(2), 171.
77 Yang C, Xu W, Chen Y, et al.International Journal of Fatigue, 2019, 124, 422.
[1] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[2] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[3] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[4] 刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
[5] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[6] 黄晓锋, 张展裕, 尚文涛, 杨凡, 张胜. Mg-7Zn-0.2Ti-xCu镁合金非枝晶组织的演变过程及机理[J]. 材料导报, 2022, 36(18): 21050203-7.
[7] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[8] 鲍键, 李全安, 陈晓亚, 张迁, 陈籽佚. 挤压镁合金的研究进展[J]. 材料导报, 2022, 36(10): 20090073-12.
[9] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[10] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[11] 车波, 卢立伟, 吴木义, 康伟, 唐伦圆, 房大庆. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258.
[12] 明玥, 游国强, 姚繁锦, 曾升, 赵建华, 李卫荣. 金属镁的氧化及氧化机理研究进展[J]. 材料导报, 2021, 35(19): 19134-19141.
[13] 陈斐洋, 郭鹏程, 胡泽豪, 马洪浩, 张立强. 不同温度下AM80镁合金的动态力学响应及本构建模[J]. 材料导报, 2021, 35(16): 16093-16098.
[14] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[15] 崔功军, 师睿博, 李赛, 刘慧强, 寇子明. AZ80A、ZK60A和ME20M镁合金干摩擦学性能研究[J]. 材料导报, 2021, 35(10): 10103-10108.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed