Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22020046-7    https://doi.org/10.11896/cldb.22020046
  无机非金属及其复合材料 |
片状Al2O3增强建筑陶瓷板材的制备与性能研究
聂光临1,2,*, 刘一军1,*, 汪庆刚1, 程科木1, 吴洋1, 黄玲艳1, 潘利敏1, 包亦望3, 饶平根2
1 蒙娜丽莎集团股份有限公司博士后科研工作站,广东 佛山 528211
2 华南理工大学材料科学与工程学院,广州 510641
3 中国建筑材料科学研究总院有限公司绿色建筑材料国家重点实验室,北京 100024
Fabrication and Properties of the Building Ceramic Slab Reinforced by Al2O3 Platelet
NIE Guanglin1,2,*, LIU Yijun1,*, WANG Qinggang1, CHENG Kemu1, WU Yang1, HUANG Lingyan1, PAN Limin1, BAO Yiwang3, RAO Pinggen2
1 Postdoctoral Research Center, Monalisa Group Co., Ltd., Foshan 528211, Guangdong, China
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
3 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
下载:  全 文 ( PDF ) ( 8470KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用片状Al2O3为二维增强体,实现了建筑陶瓷板材的力学强化。探究了片状Al2O3粒径与掺量对建筑陶瓷致密度、力学性能、物相组成与微观结构的影响规律,并阐释了片状Al2O3的强韧化机制。研究结果表明:随着片状Al2O3掺量的增加,建筑陶瓷的吸水率与显气孔率逐渐增加、致密度逐渐降低,但片状Al2O3粒径的减小有利于减弱其对建筑陶瓷致密化的抑制作用,使得片状Al2O3(粒径为5 μm)的强韧化效果明显优于片状Al2O3(粒径为10 μm);掺加5%(质量分数)片状Al2O3(5 μm)制得的建筑陶瓷弯曲强度与断裂功可达(71.6±5.5) MPa和(296.2±45.3) J/m2,分别较空白试样(片状Al2O3掺量为0%)高25.2%和46.5%。建筑陶瓷的烧结过程不会改变片状Al2O3的晶相与片晶结构,且其与建筑陶瓷基体的界面结合良好,利用片状Al2O3的复合强化、裂纹钉扎、弥散强化与预应力强化机制,可实现建筑陶瓷力学性能的有效提升。所提出的片状Al2O3强韧化技术不仅可提升建筑陶瓷板材的服役安全性与可靠性,而且有利于促进建筑陶瓷板材的薄型化制备。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂光临
刘一军
汪庆刚
程科木
吴洋
黄玲艳
潘利敏
包亦望
饶平根
关键词:  片状氧化铝  建筑陶瓷  弯曲强度  断裂功  强韧化    
Abstract: The Al2O3 platelet was used as the 2D reinforcement to improve the mechanical properties of building ceramic slabs. The effects of particle size and mixing amount of Al2O3 platelet on relative density, mechanical properties, phase compositions and microstructure of building ceramic were explored, and the strengthening-toughening mechanisms of the Al2O3 platelet were elucidated in this work. The results show that the water absorption and apparent porosity of the building ceramic were increased, and its relative density was decreased gradually with the increasing mixing amount of Al2O3 platelet. The inhibition of Al2O3 platelet on the densification of building ceramic can be weakened by reducing the particle size of Al2O3 platelet, resulting in a more excellent strengthening-toughening result of the Al2O3 platelet with a particle size of 5 μm compared with that of the Al2O3 platelet with a particle size of 10 μm. The flexural strength and fracture energy of the building ceramic prepared by the addition of 5wt% of the Al2O3 platelet with a particle size of 5 μm can be up to (71.6±5.5) MPa and (296.2±45.3) J/m2, which are 25.2% and 46.5% higher than those of the blank sample prepared without Al2O3 platelet. The crystal phase and flaky structure of Al2O3 platelet can be remained in the building ceramic matrix after the sintering process, and the interfacial bonding between the Al2O3 platelet and ceramic matrix is well; furthermore, the mechanical properties of building ceramic can be effectively improved by using the multiple combination of strengthening mechanisms (composite strengthening, crack pinning, dispersion strengthening and prestress reinforcement) of the Al2O3 platelet. The proposed strengthening-toughening technology via Al2O3 platelet is an effective method to improve the service safety and reliability of building ceramic slab, and also is conductive to promoting the fabrication of ultrathin building ceramic slabs.
Key words:  Al2O3 platelet    building ceramic    flexural strength    fracture energy    strengthening-toughening
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TU523  
基金资助: 蒙娜丽莎集团股份有限公司博士后科研工作站资助项目
通讯作者:  *聂光临,2018年7月毕业于中国建筑材料科学研究总院,获得材料学博士学位,并获得北京市普通高等学校优秀毕业生荣誉称号。2018年9月至2021年9月在广东工业大学完成第一站博士后研究工作,随后(2021年10月)进入蒙娜丽莎集团股份有限公司和华南理工大学材料科学与工程学院继续开展博士后研究工作,主要从事建筑陶瓷强韧化与深加工技术的研究。目前,已发表20余篇论文,其中SCI/EI检索论文17篇;申请10余项国家发明专利;主持2项省部级科研项目;先后获得中国建材联合会·中国硅酸盐学会建筑材料科学技术奖二等奖和一等奖、全国建材测试创新公益大赛三等奖。buildingmaterials8@163.com
刘一军,蒙娜丽莎集团股份有限公司教授级高级工程师、硕士研究生导师,享受国务院特殊津贴,先后获广东省杰出发明人、全国劳动模范等荣誉称号。2011年毕业于陕西科技大学,获工学博士学位。现任集团生产技术副总裁、国家企业技术中心副主任、广东省工程技术中心主任、广东省重点实验室主任。主要从事建筑陶瓷基础理论与应用技术研究,先后主持/参与完成了国家火炬计划项目、国家发改委资源节约和环境保护项目、广东省产业结构调整项目、国家“十一五”科技支撑计划等多项科研攻关项目。目前获得授权发明专利78件(PCT授权4件),获中国专利优秀奖2项,广东省专利优秀奖2项,省市区各类科技进步奖14项。主编/参编国家及行业标准5项,发表学术论文30余篇。235036388@qq.com   
引用本文:    
聂光临, 刘一军, 汪庆刚, 程科木, 吴洋, 黄玲艳, 潘利敏, 包亦望, 饶平根. 片状Al2O3增强建筑陶瓷板材的制备与性能研究[J]. 材料导报, 2023, 37(16): 22020046-7.
NIE Guanglin, LIU Yijun, WANG Qinggang, CHENG Kemu, WU Yang, HUANG Lingyan, PAN Limin, BAO Yiwang, RAO Pinggen. Fabrication and Properties of the Building Ceramic Slab Reinforced by Al2O3 Platelet. Materials Reports, 2023, 37(16): 22020046-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020046  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22020046
1 GB/T 23226-2009, Ceramic board. Beijing: Standards Press of China, 2009 (in Chinese).
GB/T 23226-2009, 陶瓷板. 北京: 中国标准出版社, 2009.
2 GB/T 39156-2020. Technical requirements and test methods for large format ceramic slab. Beijing: Standards Press of China, 2020 (in Chinese).
GB/T 39156-2020, 大规格陶瓷版技术要求及试验方法. 北京: 中国标准出版社, 2020.
3 Xiong L, Jing H S, Cheng X R, et al. China Ceramic Industry, 2021, 28(1), 46 (in Chinese).
熊亮, 荆海山, 程希如, 等. 中国陶瓷工业, 2021, 28(1), 46.
4 Huang H N, Ke S J. China Ceramic Industry, 2013, 20(2), 24 (in Chinese).
黄惠宁, 柯善军. 中国陶瓷工业, 2013, 20(2), 24.
5 Leonelli C, Bondioli F, Veronesi P, et al. Journal of the European Ceramic Society, 2001, 21(6), 785.
6 Martín-Márquez J, Rincón J M, Romero M. Journal of the European Ceramic Society, 2010, 30(15), 3063.
7 Zhang D, Liu Y J, Tong J F, et al. Journal of Building Materials, 2017, 20(6), 909 (in Chinese).
张电, 刘一军, 同继锋, 等. 建筑材料学报, 2017, 20(6), 909.
8 Li Y, Feng J, Cheng X, et al. International Journal of Applied Ceramic Technology, 2015, 12(S2), E132.
9 Tan X, Li Y M, Bao Y W, et al. Journal of the Chinese Ceramic Society, 2020, 48(9), 1360 (in Chinese).
谈翔, 李月明, 包亦望, 等. 硅酸盐学报, 2020, 48(9), 1360.
10 Zhang D, Liu Y J, Tong J F, et al. Journal of Building Materials, 2018, 21(1), 174 (in Chinese).
张电, 刘一军, 同继锋, 等. 建筑材料学报, 2018, 21(1), 174.
11 Chen L, Qiao L. Key Engineering Materials, 2012, 512, 596.
12 Tian L, Wang L, Wang K, et al. Royal Society Open Science, 2018, 5, 180483.
13 Yu J W, Liao Q L. Journal of Functional Materials, 2011, 42(10), 1833 (in Chinese).
于佳伟, 廖其龙. 功能材料, 2011, 42(10), 1833.
14 Wang L, Wang Q R, Liu C, et al. Journal of Ceramics, 2016, 37(6), 608 (in Chinese).
王玲, 王千瑞, 刘冲, 等. 陶瓷学报, 2016, 37(6), 608.
15 Ma X L. Shandong Ceramics, 2011, 34(6), 18 (in Chinese).
马小玲. 山东陶瓷, 2011, 34(6), 18.
16 Huang X N, Nicholson P S. Journal of the American Ceramic Society, 1993, 76(5), 1294.
17 Fredel M C, Boccaccini A R.Journal of Materials Science, 1996, 31(16), 4375.
18 Dong W, Zhu S, Han B, et al. Advances in Applied Ceramics, 2021, 120(1), 17.
19 GB/T 3810.4-2016, test methods of ceramic tiles-part 4, determination of modulus of rupture and breaking strength. Beijing, Standards Press of China, 2016 (in Chinese).
GB/T 3810.4-2016, 陶瓷砖试验方法 第4部分:断裂模数和破坏强度的测定. 北京, 中国标准出版社, 2016.
20 GB/T 10700-2006, Test methods for elastic moduli of fine ceramics (advanced ceramics, advanced technical ceramics)-bending method. Beijing, Standards Press of China, 2006 (in Chinese).
GB/T 10700-2006, 精细陶瓷弹性模量试验方法 弯曲法. 北京, 中国标准出版社, 2006.
21 Su S B. Pre-stressed ceramics and the stress analysis and design of laminate composite ceramics. Ph.D. Thesis, China Building Materials Academy, China, 2002 (in Chinese).
苏盛彪. 预应力陶瓷与层状陶瓷复合材料应力分析与设计. 博士学位论文, 中国建筑材料科学研究总院, 2002.
22 GB/T 3810.3-2016, Test methods of ceramic tiles-part 3, Determination of water absorption, apparent porosity, apparent relative density and bulk density. Beijing, Standards Press of China, 2016 (in Chinese).
GB/T 3810.3-2016, 陶瓷砖试验方法 第3部分:吸水率、显气孔率、表观相对密度和容重的测定. 北京, 中国标准出版社, 2016.
23 Wang Q G. Preparation, reinforcement and properties of ultrathin architectural ceramic plate with high strength. Ph.D. Thesis, Shanxi University of Science and Technology, China, 2019 (in Chinese).
汪庆刚. 高强度超薄建筑陶瓷板材的制备、增强和性能研究. 博士学位论文, 陕西科技大学, 2019.
24 Zhao R, Sun H W, Liu H J, et al. Bulletin of the Chinese Ceramic Society, 2011, 30(2), 271 (in Chinese).
赵冉, 孙洪巍, 刘慧娟, 等. 硅酸盐通报, 2011, 30(2), 271.
25 Munro R G. Journal of the American Ceramic Society, 1997, 80(8), 1919.
26 Nie G L, Li Y H, Sheng P F, et al. Ceramics International, 2020, 46, 21156.
27 Zanelli C, Raimondo M, Guarini G, et al. Journal of Non-Crystalline Solids, 2011, 357, 3251.
28 Jiang H F. Crystallization behavior of CaO-Al2O3-SiO2-TiO2 glass-ceramics filler and its application for joining alumina ceramics. Master's Thesis, Changchun University of Technology, China, 2019 (in Chinese).
姜海峰. CaO-Al2O3-SiO2-TiO2微晶玻璃焊料的晶化行为及其连接氧化铝陶瓷的研究. 硕士学位论文, 长春工业大学, 2019.
29 Liu H H, Liu H L, Huang C Z, et al. Key Engineering Materials, 2014, 589, 572.
30 Liu W, Xie Z. Science of Sintering, 2014, 46(1), 3.
31 Li C, Bian C, Han Y, et al. Journal of the European Ceramic Society, 2016, 36, 761.
32 Sciti D, Pienti L, Fabbriche D D, et al. Ceramics International, 2014, 40(3), 4819.
33 Zhang J. Research on using low-grade raw material to produce self-strengthening porcelain. Master's thesis, South China University of Technology, China, 2015 (in Chinese).
张捷. 利用中低品位原料制备自强化瓷的研究. 硕士学位论文, 华南理工大学, 2015.
34 Xie Z P. Structural Ceramics, Tsinghua University Press, China, 2011, pp. 332(in Chinese).
谢志鹏. 结构陶瓷, 清华大学出版社, 2011, pp. 332.
35 Carty W M, Senapati U. Journal of the American Ceramic Society, 1998, 81(1), 3.
36 Ece O I, Nakagawa Z E. Ceramics International, 2002, 28, 131.
[1] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[2] 聂光临, 刘一军, 汪庆刚, 黄玲艳, 吴洋, 潘利敏, 包亦望, 饶平根. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 22040120-9.
[3] 何松松, 焦楚杰, 欧旭. 高强抗冻透水混凝土的配合比设计与性能评估[J]. 材料导报, 2023, 37(21): 23070257-7.
[4] 袁钰轩, 马爱斌, 吴浩然, 江静华. 异构金属材料优异力学性能及其机理的研究进展[J]. 材料导报, 2023, 37(18): 21080078-7.
[5] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[6] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[7] 路畅, 陈洪运, 傅梁杰, 田光燕, 张红, 梁金生, 杨华明. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021, 35(5): 5011-5026.
[8] 周圣雄, 王威娜, 秦煜, 刘佳亮. 基于声发射特征参数的玻纤格栅复合梁阻裂机理表征[J]. 材料导报, 2021, 35(22): 22033-22038.
[9] 高妞, 刘鑫旺, 吴伟峰, 白朱成, 姚俊卿, 樊自田. 耐热高熵多主元合金及其强韧化研究现状[J]. 材料导报, 2021, 35(17): 17037-17042.
[10] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[11] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[12] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[13] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[14] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[15] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed