Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17037-17042    https://doi.org/10.11896/cldb.21040085
  高熵合金 |
耐热高熵多主元合金及其强韧化研究现状
高妞, 刘鑫旺, 吴伟峰, 白朱成, 姚俊卿, 樊自田
华中科技大学,材料科学与工程学院,材料成形与模具技术国家重点实验室,武汉 430074
Advances of the Strengthening and Toughening of High-entropy Multi-principal-element Heat-resistant Alloys
GAO Niu, LIU Xinwang, WU Weifeng, BAI Zhucheng, YAO Junqing, FAN Zitian
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 3107KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 航天、航空、船舶等工业的飞速发展对耐热合金提出了更高的要求。传统的耐热合金经长期深入发展,其高温性能已经挖掘至接近极限,亟待开发新的耐热合金体系。近年来提出的多主元高熵合金颠覆了传统固溶体合金的设计理念,显著拓宽了合金设计的成分范围,有望利用这一新的合金设计理念开发出性能更加优异的耐热合金体系。已提出的多种耐热多主元合金体系表现出各自独特的性能特点,也存在各自的不足。其中,体心立方结构的难熔多主元合金具有很高的高温强度,但室温韧性较差;而面心立方结构的多主元合金具有优异的韧塑性,但高温强度较低。针对这些问题,研究人员研究了多种强韧化方法,产生了显著的强韧化效果。本文总结了已有的耐热多主元合金体系,分析了不同合金的微观组织特点和强韧化机理,展望了耐热多主元合金的发展方向,以期为突破新型耐热合金体系开发的学术研究和工程应用提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高妞
刘鑫旺
吴伟峰
白朱成
姚俊卿
樊自田
关键词:  高熵多主元合金  微观组织  相结构  强韧化    
Abstract: Heat-resistant alloys are unique high-temperature materials widely used in the aerospace and shipbuilding industries. However,operating temperatures are now reaching limits posed by the melting temperatures of these materials.Since 2004, a new alloy design philosophy—high-entropy alloy (HEAs) or multi-principle-element alloys (MPEAs) were proposed, which have attracted significant attention due to their excellent mechanical properties, including high strength and high ductility. Due to their superior mechanical performance, HEAs are promising to be deve-loped on heat-resistant alloys. Among them, refractory HEAs with body-centered cubic (BCC) structure exhibit high high-temperature strength but poor room-temperature plasticity, while HEAs with face-centered cubic (FCC) structure show great ductility but low high-temperature strength. A variety of strengthening and toughening methods were conducted for FCC and BCC HEAs, respectively. The present work summarizes the research progress of heat-resistant HEAs. The microstructure evolution and mechanical properties at high temperatures are briefly reviewed. Finally,the future perspective of heat-resistant HEAs is prospected.
Key words:  high-entropy multi-principal-element alloy    microstructure,phase    strengthening
                    发布日期:  2021-09-26
ZTFLH:  TG132.3  
基金资助: 国家自然科学基金(51971099)
通讯作者:  liuxw@hust.edu.cn   
作者简介:  高妞,2018年6月至今就读于华中科技大学,获得工学学士学位,现攻读博士研究生,在刘鑫旺老师的指导下进行研究。目前主要研究方向为多主元合金的强韧化机理。
刘鑫旺,华中科技大学材料成形与模具技术国家重点实验室副教授、博士研究生导师。兼任全国消失模与V法铸造学会和湖北省铸造学会副秘书长。2001年9月至2011年7月就读于哈尔滨工业大学,获学士和博士学位。2011年8月加入华中科技大学,其中2015年9月至2016年8月公派德国鲁尔大学访学。主要从事先进金属材料的强韧化、凝固加工和晶粒细化。近年来,在金属材料及其凝固加工领域发表学术论文50余篇。
引用本文:    
高妞, 刘鑫旺, 吴伟峰, 白朱成, 姚俊卿, 樊自田. 耐热高熵多主元合金及其强韧化研究现状[J]. 材料导报, 2021, 35(17): 17037-17042.
GAO Niu, LIU Xinwang, WU Weifeng, BAI Zhucheng, YAO Junqing, FAN Zitian. Advances of the Strengthening and Toughening of High-entropy Multi-principal-element Heat-resistant Alloys. Materials Reports, 2021, 35(17): 17037-17042.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040085  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17037
1 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Deng Y, Tasan C C, Pradeep K G, et al. Acta Materialia, 2015, 94, 124.
4 Nutor R K, Azeemullah M, Cao Q P, et al. Journal of Alloys and Compounds, 2021, 851, 156842.
5 Tawancy H M. Materials Science and Engineering: A, 2020, 781, 139239.
6 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18(9), 1758.
7 Senkov O N,Woodward C F. Materials Science and Engineering: A, 2011, 529, 311.
8 Sheikh S, Shafeie S, Hu Q, et al. Journal of Applied Physics, 2016, 120(16), 164902.
9 Zhao Y J, Qiao J W, Ma S G, et al. Materials & Design, 2016, 96, 10.
10 Senkov O N, Scott J M, Senkova S V, et al. Journal of Materials Science, 2012, 47(9), 4062.
11 Dirras G, Lilensten L, Djemia P, et al. Materials Science and Enginee-ring: A, 2016, 654, 30.
12 Wu Y D, Cai Y H, Wang T, et al. Materials Letters, 2014, 130, 277.
13 Guo N N, Wang L, Luo L S, et al. Materials & Design, 2015, 81, 87.
14 Liu Y, Zhang Y, Zhang H, et al. Journal of Alloys and Compounds, 2017, 694, 869.
15 Senkov O N, Senkova S V, Woodward C, et al. Acta Materialia, 2013, 61(5), 1545.
16 Senkov O N, Senkova S V, Miracle D B, et al. Materials Science and Engineering: A, 2013, 565, 51.
17 Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Materials Letters, 2015, 142, 153.
18 Liu X W, Bai Z C, Ding X F, et al. Materials Letters, 2021, 287, 129255.
19 Gali A,George E P. Intermetallics, 2013, 39, 74.
20 Yang Z, Yan D, Lu W, et al. Materials Science and Engineering: A, 2021, 801, 140441.
21 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 7606, 227.
22 Li Z, Körmann F, Grabowski B, et al. Acta Materialia, 2017, 136, 262.
23 Yang Y, Luo X, Ma T, et al. Journal of Alloys and Compounds, 2021, 864, 158717.
24 Tsai C W, Tsai M H, Yeh J HW, et al. Journal of Alloys and Compounds, 2010, 490(1), 160.
25 Tang Z, Senkov O N, Parish C M, et al. Materials Science and Enginee-ring: A, 2015, 647, 229.
26 He J Y, Wang H, Huang H L, et al. Acta Materialia, 2016, 102, 187.
27 Zhao Y L, Yang T, Li Y R, et al. Acta Materialia, 2020, 188, 517.
28 Antonov S, Detrois M,Tin S. Metallurgical and Materials Transactions A, 2018, 49(1), 305.
29 Kuznetsov A V, Shaysultanov D G, Stepanov N D, et al. Materials Science and Engineering: A, 2012, 533, 107.
30 Liu X W, Gao N, Zheng J, et al. Journal of Materials Science & Techno-logy, 2020, 72, 29.
31 Wei Q, Luo G, Tu R, et al. Journal of Materials Science & Technology, 2021, 84, 1.
32 Wang M, Ma Z L, Xu Z Q, et al. Materials Science and Engineering: A, 2021, 808, 140848.
33 Wu Z, Bei H, Pharr G M, et al. Acta Materialia, 2014, 81, 428.
34 Zhao Y Y, Chen H W, Lu Z P, et al. Acta Materialia, 2018, 147, 184.
[1] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[2] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[3] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[4] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[5] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[6] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[7] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[8] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[9] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[10] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[11] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35(17): 17064-17080.
[12] 马彪, 傅丽华, 上官宝, 杜三明, 岳赟, 张永振. GCr15及G20CrNi2Mo轴承钢材料微观组织和摩擦磨损性能研究[J]. 材料导报, 2021, 35(16): 16120-16125.
[13] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[14] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[15] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed