Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16120-16125    https://doi.org/10.11896/cldb.20070124
  金属与金属基复合材料 |
GCr15及G20CrNi2Mo轴承钢材料微观组织和摩擦磨损性能研究
马彪1,2, 傅丽华1,3, 上官宝1, 杜三明1, 岳赟1, 张永振1
1 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,洛阳 471023;
2 河南科技大学材料科学与工程学院,洛阳 471023;
3 清华大学摩擦学国家重点实验室,北京 100084
Research on Microstructure and Friction Wear Performance of GCr15 and G20CrNi2Mo Bearing Steel
MA Biao1,2, FU Lihua1,3, SHANGGUAN Bao1, DU Sanming1, YUE Yun1, ZHANG Yongzhen1
1 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, China;
2 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
3 State Key Laboratory of Tribology Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 3976KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究不同轴承钢在不同载荷和速度下的摩擦磨损性能,使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、洛氏硬度计等对GCr15高碳轴承钢和G20CrNi2Mo渗碳轴承的钢组织、物相及硬度进行了表征,利用UMT摩擦磨损试验机对轴承钢材料进行了不同条件下的干摩擦磨损实验,并分析了其磨损性能。结果表明:在该实验条件下,GCr15高碳轴承钢和G20CrNi2Mo渗碳轴承钢磨擦系数和磨损随着载荷的增加而减少,随摩擦速度的增加而增加;且摩擦速度较低时,GCr15高碳轴承钢的摩擦磨损性能优于G20CrNi2Mo渗碳轴承钢,而当摩擦速度为0.17 m·s-1时,G20CrNi2Mo渗碳轴承钢磨损性能优于GCr15高碳轴承钢。磨损机制结果表明,两种轴承钢干摩擦机制均为粘着磨损和磨粒磨损,且G20CrNi2Mo渗碳钢表面粘着磨损程度较严重。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马彪
傅丽华
上官宝
杜三明
岳赟
张永振
关键词:  轴承钢  微观组织  干摩擦  磨损性能    
Abstract: In order to investigate the friction performance of bearing steel with different microstructure under different load and speed, the microstructure, phase and properties of GCr15 high-carbon bearing steel and G20CrNi2Mo carburizing bearing steel were analyzed by the scanning electron microscope (SEM), X-ray diffraction (XRD) and hardness tester, etc. The dry friction experiment of bearing steels under different conditions was conducted by UMT friction and wear tester. Then, the wear performance was analyzed. The results show that the friction coefficient and wear rate both GCr15 high-carbon bearing steel and G20CrNi2Mo carburized bearing steel in this work are decreased with the increasing of load and increased with the increase of friction velocity under this experimental conditions. When the friction velocity is low, the friction and wear performance of GCr15 high-carbon bearing steel is better than G20CrNi2Mo carburized bearing steel. When the friction velocity is 0.17 m·s-1, G20CrNi2Mo carburized bearing steel shows better wear performance than that of GCr15 high-carbon bearing steel. The wear mechanism results indicate that the adhesive wear and abrasive wear is the mainly wear mechanism for both bearing steels, and the degree of adhesive wear on the surface of G20CrNi2Mo carburized steel is more serious.
Key words:  bearing steel    microstructure    dry friction    wear performance
                    发布日期:  2021-09-07
ZTFLH:  TB333  
基金资助: 国家重点研发计划项目(2018YFB2000302);国家自然科学基金资助项目(51801054);清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF19B14)
通讯作者:  flhustb@haust.edu.cn   
作者简介:  马彪,河南科技大学材料科学与工程在读硕士,2018年获得南京工程学院金属材料工程学士学位,目前主要从事轴承材料组织与摩擦磨损性能研究。
傅丽华,河南科技大学讲师,2017年博士毕业于北京科技大学,主要从事耐磨材料的开发和研究,重点研究轴承钢材料的组织和摩擦磨损性能,在国内外期刊发表学术论文20余篇。
引用本文:    
马彪, 傅丽华, 上官宝, 杜三明, 岳赟, 张永振. GCr15及G20CrNi2Mo轴承钢材料微观组织和摩擦磨损性能研究[J]. 材料导报, 2021, 35(16): 16120-16125.
MA Biao, FU Lihua, SHANGGUAN Bao, DU Sanming, YUE Yun, ZHANG Yongzhen. Research on Microstructure and Friction Wear Performance of GCr15 and G20CrNi2Mo Bearing Steel. Materials Reports, 2021, 35(16): 16120-16125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070124  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16120
1 Wu S, Li X C, Zhang J, et al. Steel Research International, 2015, 86(7), 775.
2 Zhang F C, Yang Z N. Engineering, 2019, 5(2), 319.
3 Yang X W. Bearing, 2011(10), 59(in Chinese).
杨晓蔚. 轴承, 2011(10), 59.
4 Liu D K, Li Q, Wang X,et al. Journal of Mechanical Engineering, 2016, 52(22), 45(in Chinese).
刘德昆, 李强, 王曦, 等. 机械工程学报, 2016, 52(22), 45.
5 Jia X Z, Yu Y J, Liu H B.Advanced Materials Research, 2012, 479(481), 1442.
6 Li M, Wang X C, Duan J H, et al. Chinese Journal of Engineering, 2018, 40(S1), 31(in Chinese).
李明, 王新成, 段加恒, 等. 工程科学学报, 2018, 40(S1), 31.
7 Zhang Y, Zuo H F, Chen Z X, et al. Tribology, 2012, 32(5), 507(in Chinese).
张营, 左洪福, 陈志雄, 等. 摩擦学学报, 2012, 32(5), 507.
8 Shi X, Wang M, Zhai W, et al. Wear, 2013, 303(1-2), 9.
9 Wen H X, Sun J J, Chen W. Materials Reports A:Review Papers, 2015, 29(9), 6(in Chinese).
文怀兴, 孙建建, 陈威.材料导报:综述篇, 2015, 29(9), 6.
10 Wang S S, Guo H, Lei J Z, et al. Bearing, 2017, 16(10), 58(in Chinese).
王姗姗, 郭浩, 雷建中, 等. 轴承, 2017, 16(10), 58.
11 Wang J W. The research on the microstructure and anti-wear perfor-mance of high performance nitriding bearing steel. Master's Thesis, Xi'an University of Architecture and Technology, China, 2013(in Chinese).
王家玮. 高性能渗氮轴承钢微观组织和磨损性能研究. 硕士学位论文, 西安建筑科技大学, 2013.
12 Guo H, Du S M, Lei J Z, et al. Frontiers in Materials, 2019, 6, 9.
13 Xin Y, Zhao X J, Pan J Z, et al. Tribology, 2019, 39(4), 479(in Chinese).
辛悦, 赵秀娟, 潘金芝, 等. 摩擦学学报, 2019, 39(4), 479.
14 Razavinejad R, Firoozi S, Mirbagheri S M H. Steel Research Internatio-nal, 2012, 83(9), 861.
15 Liu R J. Research on the cleaness and properties of bearing steel G20CrNi2Mo. Master's Thesis, Northeastern University, China, 2013(in Chinese).
刘瑞军. G20CrNi2Mo轴承钢洁净度及性能研究. 硕士学位论文, 东北大学, 2013.
16 Bhadeshia H K D H. Progress in Materials Science, 2012, 57(2), 268.
17 Huang J H. Heat Treatment of Metals, 2008, 3(10), 1(in Chinese).
黄建洪. 金属热处理, 2008, 3(10), 1.
18 Liu G. Study on microstructure and toughness of high performance carburized bearing steel. Master's Thesis, Kunming University of Science and Technology, China, 2013(in Chinese).
刘刚. 高性能渗碳轴承钢的组织特征与强韧性研究. 硕士学位论文, 昆明理工大学, 2013.
19 Wang H X, Wang Z Z, Qian B N, et al. Materials Reports, 2017, 31(S2), 332(in Chinese).
王红星, 王章忠, 钱百能, 等. 材料导报, 2017, 31(S2), 332.
[1] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[2] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[3] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[4] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[5] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[6] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[7] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[8] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[9] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[10] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[11] 屈少杰, 李成军, 汤志强, 李斌东, 熊刚. TiZr3V6合金微观组织及吸氢物相转变[J]. 材料导报, 2020, 34(Z2): 360-361.
[12] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[13] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[14] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[15] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed