Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22010225-6    https://doi.org/10.11896/cldb.22010225
  无机非金属及其复合材料 |
CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响
朱建平, 张素娟, 高飞, 张文艳*
河南理工大学材料科学与工程学院,河南 焦作 454003
Effect of CNTs@SiO2 Core-Shell Nanowires on the Mechanical Properties and Microscopic Structure of Cement
ZHU Jianping, ZHANG Sujuan, GAO Fei, ZHANG Wenyan*
School of Materials Science and Engineering,Henan Polytechnic University, Jiaozuo 454003, Henan, China
下载:  全 文 ( PDF ) ( 5385KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管由于良好的力学性能被广泛应用于水泥基材料的增韧,但是碳纳米管与水泥基材料界面结合弱的问题亟需解决。本研究采用自组装的方法,对多壁碳纳米管表面进行包覆改性,合成二氧化硅包覆碳纳米管的核壳结构纳米线(CNTs@SiO2)。将原始碳纳米管(O-CNTs)、纯化碳纳米管(P-CNTs)以及CNTs@SiO2掺入水泥中,研究碳纳米管对水泥材料力学性能的影响,并结合水化热、X射线衍射分析(XRD)、热分析(TG-DTG)、扫描电子显微镜分析(SEM)等测试方法,探究其对水泥基材料力学性能的影响机理。相比O-CNTs及P-CNTs,CNTs@SiO2的掺入可显著提高水泥的早期力学性能,随着掺量的增加,抗折强度呈现先增加后降低的趋势;当CNTs@SiO2的掺量为0.08%(质量分数,下同)时,对水泥的抗折强度改善效果最好,3 d抗折强度可提高18.8%。其原因是掺入CNTs@SiO2提高了水泥水化反应速率,其表面的纳米SiO2与硬化体中的氢氧化钙反应形成二次水化产物,提升了界面结合力,从而提高了水泥的力学性能。本研究为水泥基材料用碳纳米管的改性提供新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱建平
张素娟
高飞
张文艳
关键词:  多壁碳纳米管  二氧化硅  表面包覆改性  力学性能  微观结构    
Abstract: Carbon nanotubes could be widely used to enhance the flexural toughness of cement-based materials due to the excellent mechanical properties. However, the weak interfacial adhesion between carbon nanotubes and cement-based materials is an urgent problem need to be solved. In this research, the surface of multi-walled carbon nanotubes was modified by self-assembly method, and the core-shell structure nanowires (CNTs@SiO2) of silicon dioxide coated carbon nanotubes were synthesized. The original carbon nanotubes (O-CNTs), purified carbon nanotubes (P-CNTs) and CNTs@SiO2 were incorporated into cement to investigate the influence of carbon nanotubes on the mechanical properties of cement-based materials. Hydration heat, X-ray diffraction analysis (XRD), thermal analysis (TG-DTG), scanning electron microscopy analysis (SEM) and other test methods were applied to explore the mechanism of their effect on the mechanical properties of cement-based materials. Compared with O-CNTs and P-CNTs, the incorporation of CNTs@SiO2 can significantly improve the early mechanical properties of cement, and with the increase of content of CNTs@SiO2, the flexural strength shows a tendency to increase first and then decrease; when the content of CNTs@SiO2 is 0.08% (mass fraction, the same below), the effect of improving the flexure strength of cement is the best, and the 3 d flexural strength can be increased by up to 18.8%. The reason is that the incorporation of CNTS@SiO2 promoted the hydration rate of cement, the nano-silica on the surface of CNTs@SiO2 could react with the calcium hydroxide in the hardened cement to form a second hydration product, which enhanced the interfacial adhesion. Therefore, the mechanical properties of cement are improved. The research provides a new idea for the modification of carbon nanotubes on the cement-based materials.
Key words:  multi-walled carbon nanotubes    silica    surface coating modification    mechanical property    microstructure
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TQ172.1  
基金资助: 国家自然科学基金(51908198);绿色高性能建筑材料河南省杰出外籍科学家工作室 (GZS2021003);河南省重大公益专项(201300311000)
通讯作者:  *张文艳,副教授,2013年毕业于日本室兰工业大学,获博士学位。2013—2017年在日本室兰工业大学做博士后研究,2017年开始在河南理工大学任职,主要从事固体废弃物资源化利用和混凝土耐久性研究。在国内外高水平学术期刊和国际学术会议上发表学术论文30余篇,在国际学术会议上连续两次取得国际学会优秀发表奖。zhangwy@hpu.edu.cn   
作者简介:  朱建平,河南理工大学教授,2008年于南京工业大学获博士学位,同年进入河南理工大学任教。主要从事固体废弃物资源化利用、纳米改性水泥基材料、粒度调控水泥基材料、3D打印混凝土、混凝土耐久性、石膏基材料等方向的研究。近年来在国内外知名刊物上发表高水平学术论文30余篇,获得授权发明专利15项。
引用本文:    
朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
ZHU Jianping, ZHANG Sujuan, GAO Fei, ZHANG Wenyan. Effect of CNTs@SiO2 Core-Shell Nanowires on the Mechanical Properties and Microscopic Structure of Cement. Materials Reports, 2023, 37(16): 22010225-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010225  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22010225
1 Li V C. Engineering, 2019, 5, 250.
2 Wang C, O'Moore Liza. Chinese Journal of Civil Engineering, 2009, 42(6), 1 (in Chinese).
王冲,O'Moore Liza. 土木工程学报, 2009, 42(6), 1.
3 Gesoglu M, Guneyisi E, Asaad D S, et al. Construction and Building Materials, 2016, 102, 706.
4 Le H V, Kim D J. Construction and Building Materials, 2020, 240, 117973.
5 Xu S L, Liu J T, Li Q H. Construction and Building Materials, 2015, 76, 16.
6 Zhu P, Deng G H, Shao X D. Materials Reports, 2018, 32(1), 149 (in Chinese).
朱平, 邓广辉, 邵旭东.材料导报, 2018, 32(1), 149.
7 Salvetat J P, Bonard J M, Thomson N H, et al. Applied Physics A, 1999, 69, 255.
8 Treacy M, Ebbesen T W, Gibson J M. Nature, 1996, 381, 678.
9 Niu D T, He J Q, Fu Q, et al. Journal of the Chinese Ceramic Society, 2020, 48(5), 705 (in Chinese).
牛荻涛, 何嘉琦, 傅强, 等.硅酸盐学报, 2020, 48(5), 705.
10 Barodawala Q I, Shah S G, Shah S G. Indian Concrete Journal, 2017, 91, 81.
11 Al-Rub R K X A, Ashour A I, Tyson B M. Construction and Building Materials, 2012, 35, 647.
12 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Cement and Concrete Research, 2010, 40, 1052.
13 Konsta-Gdoutos M S, Batis G, Danoglidis P A, et al. Construction and Building Materials, 2017, 147, 48.
14 Wang C, Wei L Y, Du M R, et al. Journal of the Chinese Ceramic Society, 2021, 49(11), 2486 (in Chinese).
王超, 蔚立元, 杜明瑞, 等. 硅酸盐学报, 2021, 49(11), 2486.
15 Wang B M, Zhang Y. Materials Express, 2014, 4, 177.
16 Wang B M, Zhang Y, Liu S. Nanoscience and Nanotechnology Letters, 2013, 5, 1112.
17 Zhang J Y, Ke Y, Zhang J R,et al. Construction and Building Materials, 2020, 262(46), 120746.
18 Ni D J, Zhang J F, Wang X Y, et al. Industrial & Engineering Chemistry Research, 2017, 56, 2899.
19 Song J P, Choi S H, Chung D W, et al. Polymers, 2021, 13, 1168.
20 Lee H S, Balasubramanian B, Gopalakrishna G V T, et al. Construction and Building Materials, 2018, 159, 463.
21 Wang Y, Leng W G, Gao Y A, et al. ACS Applied Materials & Interfaces, 2014, 6, 4143.
22 Zhao G X, Liu H Y, Du X S, et al. Composites Communications, 2021, 24, 100623.
23 Karakouzian M, Farhangi V, Farani M R, et al. Materials, 2021, 14, 1347.
24 Varisha, Zaheer M M, Hasan S D. Materials Today: Proceedings, 2021, 42, 1422.
25 Musso S, Tulliani J M, Ferro G, et al. Composites Science and Technology, 2009, 69, 1985.
26 Pan R Z, Zhang S P, Zheng D P, et al. Materials Reports, 2017, 31(19), 97 (in Chinese).
潘锐之, 张树鹏, 郑大鹏, 等. 材料导报, 2017, 31(19), 97.
27 Lu S Q, Wu S F. CIESC Journal, 2015, 66(8), 2895 (in Chinese).
卢尚青, 吴素芳.化工学报, 2015, 66 (8), 2895.
28 Wu S F, Li Q H, Kim J N, et al. Industrial & Engineering Chemistry Research, 2008, 47, 180.
29 Carrico A, Bogas J A, Hawreen A, et al. Construction and Building Materials, 2018, 164, 121.
30 Fakhim B, Hassani A, Rashidi A, et al. Journal of Composite Materials, 2015, 49, 85.
31 Isfahani F T, Li W W, Redaelli E. Cement & Concrete Composites, 2016, 74, 154.
32 Li S J, Zhang Y L, Lin S S, et al. Construction and Building Materials, 2021, 281, 122577.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[6] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[7] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[8] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[9] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[10] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[11] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[12] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[13] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[14] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[15] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed