Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22010288-9    https://doi.org/10.11896/cldb.22010288
  无机非金属及其复合材料 |
光固化3D打印磷酸钙基生物陶瓷支架的研究进展
董栋1, 苏海军1,2,*, 李翔2, 赵迪2, 樊光娆2, 申仲琳1,2, 刘园2
1 西北工业大学深圳研究院,广东 深圳 518057
2 西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress on Preparation of Calcium Phosphates Bioceramic Scaffolds by Vat Polymerization 3D Printing
DONG Dong1, SU Haijun1,2,*, LI Xiang2, ZHAO Di2, FAN Guangrao2, SHEN Zhonglin1,2, LIU Yuan2
1 Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, Guangdong, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 10184KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸钙基生物陶瓷多孔支架是临床中实现骨缺损再生修复的常用骨移植物。光固化3D打印技术以其优异的打印精度和复杂结构成形特性能够精确地控制支架孔尺寸、孔形状、孔连通率,在制备生物陶瓷多孔支架领域展现出巨大的应用潜力。然而,利用光固化3D打印技术制备磷酸钙基生物陶瓷多孔支架仍面临亟需克服的挑战,如缺乏性能优异的磷酸钙基陶瓷打印浆料、打印及后处理工艺不成熟、制备的磷酸钙基陶瓷多孔支架的性能还有待提升。本文首先介绍了几种常用的光固化3D打印技术基本原理与特征,然后从3D打印成形工艺、力学性能、生物活性、支架结构及功能化等方面系统探讨了光固化3D打印技术在制备磷酸钙基生物陶瓷多孔支架领域的研究进展及存在的问题,最后展望了光固化3D打印磷酸钙基生物陶瓷多孔支架的发展趋势和突破点,为利用光固化3D打印技术制备成本低、综合性能优异的磷酸钙基生物陶瓷多孔支架提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董栋
苏海军
李翔
赵迪
樊光娆
申仲琳
刘园
关键词:  光固化3D打印  生物陶瓷多孔支架  骨缺损  磷酸钙    
Abstract: Calcium phosphate bioceramic porous scaffolds are commonly used as bone grafts for regenerative repair of bone defects in clinic. Vat polymerization (VP-based) 3D printing techniques are capable of precisely controlling the pore size, pore shape, interconnectivity of scaffold by its excellent printing accuracy and ability of complex structure forming. Therefore, VP-based 3D printing techniques have shown great prospects in the field of fabricating bioceramic porous scaffolds for regenerative repair of bone defects. However, the VP-based 3D printing of calcium phosphate bioceramic porous scaffolds still faces several prickly issues. For example, there is lack of high loading calcium phosphate ceramic slurry with low viscosity and low refractive index difference, and the printing and post-processing processes are immature, and the performance of calcium phosphate ceramic scaffolds needs to be improved. This review briefly introduces the basic principles and characteristics of several commonly used VP-based 3D printing technologies at first, and then systemically explores the research progress and existing problems of VP-based 3D printing techniques in the preparation of calcium phosphate bioceramic porous scaffolds from the aspects of 3D printing forming process, mechanical properties, biological activity, scaffold structure and functionalization. Finally, the development trend and breakthrough points of VP-based 3D printing calcium phosphate bioceramic scaffolds are prospected, in order to provide a new way for the preparation of calcium phosphate bioceramic scaffolds with excellent comprehensive properties and low cost by VP-based 3D printing technologies.
Key words:  VP-based 3D printing    bioceramic porous scaffold    bone defect    calcium phosphate
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TB34  
基金资助: 广东省基础与应用基础研究基金重点项目(2021B1515120028);国家自然科学基金(52130204;52174376);陕西省科技创新团队计划项目(2021TD-17);中央高校基础研究基金(D5000210902);西北工业大学博士论文创新基金(CX2021056;CX2021066)
通讯作者:  *苏海军,西北工业大学材料学院教授、博士研究生导师。国家自然科学基金优秀青年基金获得者,入选国家首批“香江学者”计划,陕西省“青年科技新星”,陕西省重点科技创新团队和高校青年创新团队学术带头人。主要从事先进复合陶瓷设计、制备及应用研究,主持包括国家自然科学基金重点项目等六项国家基金在内的国家及省部级科研项目30余项,研究成果在Nano Letters、Small、ACS Applied Materials and Interfaces、Journal of the European Ceramic Society等国际著名学术期刊上发表SCI论文150余篇。获授权中国发明专利50余项以及一项美国发明专利。参编专著三部。获陕西高校优秀研究成果特等奖、陕西省科学技术一等奖、全国有色金属优秀青年科技奖和陕西省青年科技奖各一项。shjnpu@nwpu.edu.cn   
作者简介:  董栋,2015年6月、2020年3月分别于东北石油大学和西北工业大学取得工学学士和硕士学位。现为西北工业大学材料学院博士研究生,在苏海军教授的指导下进行研究。目前主要研究领域为光固化3D打印制备生物活性陶瓷。
引用本文:    
董栋, 苏海军, 李翔, 赵迪, 樊光娆, 申仲琳, 刘园. 光固化3D打印磷酸钙基生物陶瓷支架的研究进展[J]. 材料导报, 2023, 37(18): 22010288-9.
DONG Dong, SU Haijun, LI Xiang, ZHAO Di, FAN Guangrao, SHEN Zhonglin, LIU Yuan. Research Progress on Preparation of Calcium Phosphates Bioceramic Scaffolds by Vat Polymerization 3D Printing. Materials Reports, 2023, 37(18): 22010288-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010288  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22010288
1 Wang X H, Ao Q, Tian X H, et al. Materials (Basel), 2016, 9(10), 802.
2 Xiao D Q, Zhang J W, Zhang C D, et al. Acta Biomaterialia, 2020, 106, 22.
3 Du X Y, Fu S Y, Zhu Y F. Journal of Materials Chemistry B, 2018, 6(27), 4397.
4 Samavedi S, Whittington A R, Goldstein A S. Acta Biomaterialia, 2013, 9, 8037.
5 Le Geros R Z. Chemical Reviews, 2008, 108, 4742.
6 Bose S, Roy M, Bandyopadhyay A. Trends in Biotechnology, 2012, 30(10), 546.
7 Turnbull G, Clarke J, Picard F, et al. Bioactive Materials, 2018, 3(3), 278.
8 Bose S, Vahabzadeh S, Bandyopadhyay A. Materials Today, 2013, 16(12), 496.
9 Hwa L C, Rajoo S, Noor A M, et al. Current Opinion in Solid State and Materials Science, 2017, 21(6), 323.
10 Lin K, Sheikh R, Romanazzo S, et al. Materials (Basel), 2019, 12(17), 2660.
11 Hua S B, Su J, Deng Z L, et al. Additive Manufacturing, 2021, 45, 102074.
12 Duan B, Cheung W L, Wang M. Biofabrication, 2011, 3(1), 015001.
13 Chen G, Chen N, Wang Q. Composites Science and Technology, 2019, 172, 17.
14 Ke X R, Qiu J D, Wang X J, et al. The FASEB Journal, 2020, 34(4), 5673.
15 Chen L, Deng C J, Li J Y, et al. Biomaterials, 2019, 196, 138.
16 Fiedor P, Ortyl J. Materials (Basel), 2020, 13(13), 2951.
17 Bracaglia L G, Smith B T, Watson E, et al. Acta Biomaterialia, 2017, 56, 3.
18 Qu H W. Materials Today Communications, 2020, 24, 101024.
19 Bhushan B, Caspers M. Microsystem Technologies: Micro-and Nanosystem-Information Storage and Processing Systems, 2017, 23(4), 1117.
20 Chen Y, Li W L, Zhang C, et al. Advanced Healthcare Materials, 2020, 9, 2000724.
21 Kadry H, Wadnap S, Xu C X, et al. European Journal of Pharmaceutical Sciences, 2019, 135, 60.
22 Ng W L, Lee J M, Zhou M M, et al. Biofabrication, 2020, 12(2), 022001.
23 Sun C, Fang N, Wu D M, et al. Sensors and Actuators A: Physical, 2005, 121(1), 113.
24 Chartrain N A, Williams C B, Whittington A R. Acta Biomaterialia, 2018, 74, 90.
25 Zhang F, Zhu L Y, Li Z G, et al. Additive Manufacturing, 2021, 48, 102423.
26 Quan H Y, Zhang T, Xu H, et al. Bioactive Materials, 2020, 5(1), 110.
27 Chia H N, Wu B M. Journal of Biological Engineering, 2015, 9, 4.
28 Cho Y H, Lee I H, Cho D W. Microsystem Technologies: Micro-and Nanosystem-Information Storage and Processing Systems, 2005, 11(2-3), 158.
29 De Hazan Y, Penner D. Journal of the European Ceramic Society, 2017, 37(16), 5205.
30 Kumar M, Sharma V. Rapid Prototyping Journal, 2021, 27(6), 1230.
31 Wu L F, Zhao L D, Jian M, et al. Rapid Prototyping Journal, 2018, 24(9), 1500.
32 Zhang L, Feih S, Daynes S, et al. Journal of the European Ceramic Society, 2020, 40(2), 408.
33 Xu Z, Ha C S, Kadam R, et al. Additive Manufacturing, 2020, 32, 101106.
34 Bouler J M, Pilet P, Gauthier O, et al. Acta Biomaterialia, 2017, 53, 1.
35 Kalita S J, Bhardwaj A, Bhatt H A. Materials Science and Engineering C, 2007, 27(3), 441.
36 Arinzeh T L, Tran T, McAlary J, et al. Biomaterials, 2005, 26(17), 3631.
37 Eliaz N, Metoki N. Materials (Basel), 2017, 10(4), 334.
38 Zhou H J, Lee J. Acta Biomaterialia, 2011, 7(7), 2769.
39 Gao C D, Yao M, Shuai C J, et al. Bio-Design and Manufacturing, 2020, 3(4), 307.
40 Chen Y, Wang J, Zhu X D, et al. Acta Biomaterialia, 2015, 11, 435.
41 Descamps M, Boilet L, Moreau G, et al. Journal of the European Ceramic Society, 2013, 33(7), 1263.
42 Zhang D W, Wu X W, Chen J D, et al. Bioactive Materials, 2018, 3(1), 129.
43 Ebrahimi M, Botelho M G, Dorozhkin S V. Materials Science and Engineering C, 2017, 71, 1293.
44 Dorozhkin S V. Acta Biomaterialia, 2012, 8(3), 963.
45 Li Y Q, Jiang T M, Zheng L, et al. Materials Science and Engineering C, 2017, 80, 296.
46 Barba A, Diez-Escudero A, Maazouz Y, et al. ACS Applied Materials & Interfaces, 2017, 9(48), 41722.
47 Zakeri S, Vippola M, Levänen E. Additive Manufacturing, 2020, 35, 101177.
48 Halloran J W. Annual Review of Materials Research, 2016, 46(1), 19.
49 Chen Z W, Li J J, Liu C B, et al. Ceramics International, 2019, 45(9), 11549.
50 Ding G J, He R J, Zhang K Q, et al. Journal of the American Ceramic Society, 2019, 102(12), 7198.
51 Li X, Zhang H, Shen Y F, et al. Materials Chemistry and Physics, 2021, 267, 124587.
52 Wu Y L, Chen R M, Zhao G B, et al. Journal of the European Ceramic Society, 2020, 40(12), 4323.
53 Huang X L, Dai H L, Hu Y F, et al. Journal of the European Ceramic Society, 2021, 41(6), 3743.
54 Yao Y X, Qin W, Xing B H, et al. Journal of Advanced Ceramics, 2021, 10(1), 39.
55 O'Brien F J. Materials Today, 2011, 14(3), 88.
56 Kang J H, Sakthiabirami K, Jang K J, et al. Materials & Design, 2022, 214, 110372.
57 Gomez S, Vlad M D, Lopez J, et al. Acta Biomaterialia, 2016, 42, 341.
58 Baino F, Magnaterra G, Fiume E, et al. Journal of the American Ceramic Society, 2021, 105(3), 1648.
59 Liu S D, Chen J M, Chen T, et al. Ceramics International, 2021, 47(9), 13187.
60 Charbonnier B, Manassero M, Bourguignon M, et al. Acta Biomaterialia, 2020, 109, 254.
61 Habibovic P, Yuan H, Van Der Valk C M, et al. Biomaterials, 2005, 26(17), 3565.
62 Lee Y H, Lee J W, Yang S Y, et al. Ceramics International, 2021, 47(8), 11285.
63 Simunovic F, Finkenzeller G. Cells, 2021, 10(7), 1749.
64 Han X Y, Sun M J, Chen B, et al. Bioactive Materials, 2021, 6(6), 1639.
65 Bouchart F, Vidal O, Lacroix J M, et al. Materials Science and Enginee-ring C, 2020, 111, 110840.
[1] 梁庆优, 邓春林. 长骨大段骨缺损修复材料的力学性能及制备策略[J]. 材料导报, 2021, 35(13): 13100-13108,13118.
[2] 洪佳丹,何丽泳,杨慧方,韦路希,庞栋文,邓春林. 基质囊泡及其在骨矿化过程中的作用[J]. 《材料导报》期刊社, 2018, 32(11): 1827-1833.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed