Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13100-13108,13118    https://doi.org/10.11896/cldb.20060058
  无机非金属及其复合材料 |
长骨大段骨缺损修复材料的力学性能及制备策略
梁庆优1,2, 邓春林1,*
1 华南理工大学材料科学与工程学院,广州 510640
2 华南理工大学分析测试中心,广州 510640
Mechanical Properties and Preparation Strategies of Bone Repair Materials in the Treatment of Large Bone Defects
LIANG Qingyou1,2, DENG Chunlin1,*
1 School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 6274KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在长骨大段骨缺损修复中,自体骨移植是治疗的“金标准”,但存在来源有限等问题;合金和部分陶瓷由于应力屏蔽效应而引起骨吸收;可降解生物材料的力学性能无法与皮质骨相匹配。因此,力学适配性是目前硬组织修复材料研究的首要目标。通过汇总硬组织修复材料的拉伸强度-杨氏模量的关系、断裂韧度-杨氏模量的关系、冲击强度(韧度)-杨氏模量的关系和杨氏模量-密度的关系可以发现,现有硬组织修复材料的四对力学性质都没有进入皮质骨的范围,离长骨骨干力学性质中央区域还有很长的距离。骨的微观结构对开发新型骨修复材料极具启示。骨实际上是一种复合材料,无机相、有机相均各自交联成一个独立的整体,但又在分子尺度加以复合,相互穿插、缠绕,具有既强又韧的性能。因此,满足皮质骨力学适配性的硬组织修复材料应包含羟基磷灰石和生物相容性良好的高分子材料,且它们在纳米尺度复合。海鞘纤维素具有很高的模量,拥有增强复合材料的巨大潜力。将海鞘纤维素与纳米羟基磷灰石复合,通过温和成型制备方法(如离子寡聚体聚合、冷烧结或快烧结等方法)有望获得力学性能与皮质骨匹配的人工骨修复材料。本文归纳了长骨大段骨缺损修复材料的研究现状,并指出了存在的问题,进一步根据骨的微观结构讨论了生物复合材料设计和制备策略,以期为开发出力学性能优良的生物材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁庆优
邓春林
关键词:  长骨大段骨缺损  人工骨修复材料  力学适配  骨微观结构    
Abstract: Autologous bone graft, which is considered as “the gold standard” in repairing large bone defect (LBD), bears limited sources. Alloys and ceramics lead to bone absorption because of stress shielding. Biodegradable materials have good osteogenesis. However, their mechanical properties do not match natural bones. Thus it is the principal goal for treatment of LBD to endow biomaterials with matched mechanical properties similar to cortical bones. The data of four pairs of relationships for hard tissue repair materials, which involve tensile strength-Young' modulus (E), fracture toughness-E, impact strength (toughness)-E, and E-density, show that all these relationships are located outside the scope of cortical bone's mechanical properties and far beyond the center. The microstructure of bone inspires us to discovery new biomaterials. Bone is actually a kind of strong and tough composite material, where inorganic and organic phases are cross-linked as an independent structure respectively, and the two phases are composited and entangled in the molecular level. Therefore, the hard tissue repair materials ought to contain hydroxyapatite (HAp) and biocompatible polymer(s) and be compo-sited on the nanoscale. Ascidian cellulose (AC) has high modulus and possesses great potentiality to enhance bone repair materials. Mild mol-ding conditions including ionic oligomer cross-linking, cold sintering, and fast sintering methods should be employed for the composition of HAp and AC to obtain cortical-bone-matched materials with proper mechanics. This work enumerates the materials employed in LBD, and the existing problem is emphasized. According to the micro structure of bone, the design and preparation strategies of the composite biomaterials are discussed, which may facilitate the research on biomaterial mechanics.
Key words:  large bone defects (LBD)    man-made bone repair materials    mechanical adaption    bone micro-structure
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TQ170  
基金资助: 国家自然科学基金面上项目(51972120;51772105)
作者简介:  梁庆优,华南理工大学分析测试中心有机室主任,工程师。主要负责红外和拉曼光谱的分析和测试、复杂体系成分分析等工作,发表文章十余篇,授权及公开发明专利5项。2007年起在中国科学院广州化学研究所分析测试中心工作,任质量负责人。2016年加入华南理工大学分析测试中心。现为华南理工大学材料科学与工程学院博士研究生,导师为邓春林教授。现主要研究方向为骨修复生物材料的制备以及拉曼表征。
邓春林,华南理工大学材料科学与工程学院教授、博士研究生导师。2004年博士毕业于四川大学生物医学工程专业。主要研究方向为生物材料的合成与制备、生物材料表面的仿生矿化、生物材料与蛋白质及细胞的相互作用,以及体外动态模拟和矿化模型的建立。已发表SCI论文40余篇,刊登在Biomaterials等期刊上。主持863、国家自然科学基金等项目多项。
引用本文:    
梁庆优, 邓春林. 长骨大段骨缺损修复材料的力学性能及制备策略[J]. 材料导报, 2021, 35(13): 13100-13108,13118.
LIANG Qingyou, DENG Chunlin. Mechanical Properties and Preparation Strategies of Bone Repair Materials in the Treatment of Large Bone Defects. Materials Reports, 2021, 35(13): 13100-13108,13118.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060058  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13100
1 Zhong S Z. Systematic anatomy, Higher Education Press, China,2003(in Chinese).
钟世镇.系统解剖学,高等教育出版社,2003.
2 Tortora G J. Principles of human anatomy, Wiley, USA,2002.
3 Iyer K M, Khan W S. General principles of orthopedics and trauma, Springer Nature, Switzerland,2019.
4 Wang Y Y, Naleway S E, Wang B. Bioactive Materials,2020,5(4),745.
5 Hamed E, Jasiuk I. Materials Science and Engineering R,2012,73(3-4),27.
6 Mauffrey C, Barlow B T, Smith W. Journal of the American Academy of Orthopaedic Surgeons,2015,23(3),143.
7 Qi X Y, Qiu X S, Shi H F, et al. Journal of Practical Orthopaedic,2017,23(8),715(in Chinese).
戚晓阳,邱旭升,施鸿飞,等.实用骨科杂志,2017,23(8),715.
8 Deng L F, Yan Y F. Chinese Journal of Reparative and Reconstructive Surgery,2018,32(7),815(in Chinese).
邓廉夫,燕宇飞.中国修复重建外科杂志,2018,32(7),815.
9 Planell J A. Bone repair biomaterials, CRC Press, UK,2009.
10 Huang L. Journal of Clinical Orthopaedic Research,2020,5(1),1(in Chinese).
黄雷.骨科临床与研究杂志,2020,5(1),1.
11 Amini A R, Laurencin C T, Nukavarapu S P. Critical Review Biomedical Engineering,2012,40(5),363.
12 Heest A V, Swiontkowski M. Lancet,1999,353(suppl I),28.
13 Bauer H. Zentralblatt für Chirurgie,1910,37,20.
14 Othman S, Bricker J T, Azoury S C, et al. Journal of Plastic Reconstructive and Aesthetic Surgery,2020,73(7),1221.
15 Zhao K, Wang Y L, Lu M X, et al. Chinese Journal of Reparative and Reconstructive Surgery,2018,32(9),1211(in Chinese).
赵坤,王延岭,卢敏勋,等.中国修复重建外科杂志,2018,32(9),1211.
16 Masquelet A C, Begue T. Orthopedic Clinics of North America,2010,41(1),7.
17 Chaddha M, Gulati D, Singh A P, et al. Acta Orthopaedica Belgica,2010,76(6),811.
18 Wood M B, Bishop A T. Hand Clinics,2007,23,49.
19 Wang Q F, Yan J H, Yang J L, et al. Materials Today,2016,19(8),451.
20 Hench L L. Science,1980,208(4446),826.
21 Yu Z T, Yu S, Cheng J, et al. Acta Metallurgica Sinica,2017,53(10),1238(in Chinese).
于振涛,余森,程军,等.金属学报,2017,53(10),1238.
22 Niinomi M.Journal of the Mechanical Behavior of Biomedical Materials,2008,1(1),30.
23 Hench L L, Polak J M. Science,2002,295(5557),1014.
24 Barrère F, Mahmood T A, Groot K D, et al. Materials Science and Engineering R,2008,59(1-6),38.
25 Shao H F, He Y, Fu J Z. Journal of Zhejiang University (Engineering Science),2018,52(6),1035(in Chinese).
邵惠锋,贺永,傅建中.浙江大学学报(工学版),2018,52(6),1035.
26 Jin Y R, Jia Q M, Shan S Y. Materials Reports A: Review Papers,2019,33(12),4008(in Chinese).
晋艳茹,贾庆明,陕绍云.材料导报:综述篇,2019,33(12),4008.
27 Kokubo T, Kim H M, Kawashita M. Biomaterials,2003,24(13),2161.
28 Yan Y, Kang Y J, Li D, et al. Materials Science and Engineering C,2017,74,582.
29 Jiang Y, Zhou J P, Shi H C, et al. Journal of Material Science,2020,55(6),2618.
30 Vella J B, Trombetta R P, Hoffman M D, et al. Journal of Biomedical Materials Research Part A,2018,106A,663.
31 Shuai C J, Yang B, Peng S P, et al. International Journal of Advanced Manufacturing Technology,2013,69(1-4),51.
32 Alanís-Gómez J R, Rivera-Muoz E M, Peza-Ledesma C, et al. Journal of Nanoscience and Nanotechnology,2020,20(3),1968.
33 Quan D P, Lu Z J, Li S P, et al. Chinese Journal of Biomedical Engineering,2001,20(6),485(in Chinese).
全大萍,卢泽俭,李世普,等.中国生物医学工程学报,2001,20(6),485.
34 Shikinami Y, Okuno M. Biomaterials,1999,20(9),859.
35 Zhang L, Li Y B, Wei J, et al. Journal of Functional Materials,2005,36(3),441(in Chinese).
张利,李玉宝,魏杰,等.功能材料,2005,36(3),441.
36 He X C, Fan X L, Feng W P, et al. International Journal of Biological Macromolecules,2018,115,385.
37 Sarkar C, Kumari P, Anuvra K, et al. Journal of Material Science,2018,53(1),230.
38 Pietrzykowska E, Mukhovskyi R, Chodara A, et al. Materials Letters,2019,236,625.
39 Qiu Z Y, Tao C S, Cui H, et al. Frontiers of Materials Science,2014,8(1),53.
40 Hu Q L, Li B Q, Wang M, et al. Biomaterials,2004,25(5),779.
41 Zhang Y, Xu H H K, Takagi S. Journal of Material Science-Materials in Medicine,2006,17(5),437.
42 Hassanajili S, Karami-Pour A, Oryan A, et al. Materials Science & Engineering C,2019,104,109960.
43 Pramanik S, Agarwala P, Vasudevan K, et al. Journal of Applied Polymer Science,2019,137(30),48913.
44 Xue W, Chen P F, Wang F J, et al. Journal of Material Science,2019,54(11),8602.
45 Ahmed M K, Mansour S F, Al-Wafi R, et al. Journal of Material Science,2019,54(23),14524.
46 Kanasan N, Adzila S, Mustaffa N A, et al. Procedia Engineering,2017,184,442.
47 Kolluru P V, Lipner J, Liu W Y, et al. Acta Biomaterialia,2013,9(12),9442.
48 Ragaert K, Cardon L, De Baere I, et al. In: 6th Polymers & Mould Innovations International Conference Proceedings. Belgium,2014,pp.339.
49 Huang W, Restrepo D, Jung J, et al. Advanced Materials,2019,31(43),1901561.
50 Fratzl P, Weinkamer R. Progress in Materials Science,2007,52,1263.
51 Gibson L J, Ashby MF. Materials Research Society Symposium Procee-dings,1992,255,343.
52 Qu H W, Han Z Y, Zhuo Y, et al. Chinese Journal of Mechanical Engineering,2019,55(15),71(in Chinese).
屈华伟,韩振宇,卓越,等.机械工程学报,2019,55(15),71.
53 Ning C Y, Zhou L, Tan G X. Materials Today,2016,19(1),2.
54 Lu Y, Aimetti A A, Langer R, et al. Nature Reviews Materials,2017,2(1),16075.
55 Li L, Lu H W, Zhao Y L, et al. Materials Science & Engineering C,2019,98,1241.
56 Langer R, Vacanti J P. Science,1993,260(5110),920.
57 Khademhosseini A, Langer R. Nature Protocols,2016,11(10),1775.
58 Griffith L G, Naughton G. Science,2002,295(5557),1009.
59 Crane G M, Ishaug S L, Mikos A G. Nature Medicine,1995,1(12),1322.
60 Mann S, Archibald D D, Didymus J M, et al. Science,1993,261(5126),1286.
61 Du C, Falini G, Fermani S, et al. Science,2005,307(5714),1450.
62 Du C, Wang Y J. Journal of Inorganic Materials,2009,24(5),882(in Chinese).
杜昶,王迎军.无机材料学报,2009,24(5),882.
63 Waigh T A. The Physics of Living Processes, John Wiley & Sons, UK,2014.
64 Tjderhane L, Carrilho M R, Breschi L, et al. Endodontic Topics,2012,20,3.
65 Craig R G, Peyton F A, Johnson D W. Journal of Dental Research,1961,40(5),936.
66 Giannini M, Soares C J, Carvalho R M. Dental Materials,2004,20(4),322.
67 He P, Chen J X, Su M, et al. CIESC Journal,2015,66(S2),450(in Chinese).
何朋,陈建新,苏敏,等.化工学报,2015,66(S2),450.
68 Jackson A P, Vincent J F V, Turner R M. Proceedings of the Royal Society of London, Series B,1988,234(1277),415.
69 Fang Z Q. Investigations of multi-scale structures and mechanical beha-viors of deer antler. Master’s Thesis, Chongqing University, China,2018(in Chinese).
方仲祺.鹿角多级结构及其力学性能研究.硕士学位论文,重庆大学,2018.
70 Liu J, Zhang S W, Zhang Z J. Applied Mechanics and Materials,2012,195-196,441.
71 Mao L B, Gao H L, Yao H B, et al. Science,2016,354(6308),107.
72 Weiner S,Wagner D H. Annual Review of Materials Research,1998,28(1),271.
73 Ritchie R O, Buehler M J, Hansma P. Physics Today,2009,62(6),41.
74 Interrante L V, Hampden-Smith M J. Chemistry of advanced materials, Wiley-VCH Inc., USA,1998.
75 Mann S. Nature,1988,332(6160),119.
76 Li S F, Qian D. Multiscale simulations and mechanics of biological mate-rials, John Wiley & Sons, UK,2013.
77 Saltzman W M. Biomedical engineering, bridging medicine and technology, Cambridge University Press, UK,2009.
78 Dubey D K, Tomar V. Mechanics Research Communications,2008,35(1-2),24.
79 Meyers M A, McKittrick J, Chen P Y. Science,2013,339(6121),773.
80 Liu Z M, Shao C Y, Jin B, et al. Nature,2019,574(7778),394.
81 Weiner S, Sagi I, Addadi L. Science,2005,309(5737),1027.
82 Li X D, Huang Z W. Physical Review Letters,2009,102(7),075502.
83 Peterlik H, Roschger P, Klaushofer K, et al. Nature Materials,2006,5(1),52.
84 Jiang S H, Wang H, Wu Y, et al. Nature,2017,544(7651),460.
85 Liu L, Yu Q, Wang Z, et al. Science,2020,368(6497),1347.
86 Habibi Y, Lucia L A, Rojas O J. Chemical Review,2010,110(6),3479.
87 Hamad W. The Canadian Journal of Chemical Engineering,2006,84(5),513.
88 Smith M J, Dehnel P A. Comparative Biochemistry and Physiology,1971,40B,615.
89 Rinehart K L, Gloer J B, Hughes R G, et al. Science,1981,212(4497),933.
90 Kimura S, Itoh T. Cellulose,2004,11(3-4),377.
91 Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, et al. Biomacromolecules,2008,9(1),57.
92 Iwamoto S, Kai W H, Isogai A, et al. Biomacromolecules,2009,10(9),2571.
93 Turcova A S, Davies G R, Eichhorn S J. Biomacromolecules,2005,6(2),1055.
94 Cao L M, Yuan D S, Xu C H, et al. Nanoscale,2017,9(40),15696.
95 Ueki T, Yamaguchi N, Romaidi Y, et al. Coordination Chemistry Reviews,2015,301-302,300.
96 Prakasam M, Locs J, Salma-Ancane K, et al. Journal of Functional Biomaterials,2015,6(4),1099.
97 Eckel Z C, Zhou C Y, Martin J H, et al. Science,2016,351(6268),58.
98 Wang C W, Ping W W, Bai Q, et al. Science,2020,368(6490),521.
99 Yu Y D, Mu Z, Jin B, et al. Angewandte Chemie International Edition,2020,59(5),2071.
10 0 Guo J, Baker A L, Guo H Z, et al. Journal of American Ceramic Society,2017,100(2),669.
1 Guo J, Floyd R, Lowum S, et al. Annual Review of Materials Research,2019,49,275.
2 Niu L N, Jee S E, Jiao K, et al. Nature Materials,2016,16(3),1.
3 Yao S S, Jin B, Liu Z M, et al. Advanced Materials,2017,29(14),1605903.
4 Yang Y, Lu Y T, Zeng K, et al. Advanced Materials, 2020, DOI: 10.1002/adma.202000717.
5 Mondal S, Dorozhkin S V, Pal U. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology,2017,10(4),e1504.
6 Ducheyne P. Comprehensive biomaterials II, Elsevier, Netherland,2017.
[1] 晋艳茹, 贾庆明, 陕绍云. 羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展[J]. 材料导报, 2019, 33(23): 4008-4015.
[2] 匡敬忠, 刘鹏飞, 罗大芳, 周原彬, 黄哲誉. 高岭石热分解反应动力学计算方法对比[J]. 《材料导报》期刊社, 2018, 32(14): 2376-2383.
[3] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[4] 史公初, 廖亚龙, 张宇, 苏博文, 王伟. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13): 13044-13049.
[5] 袁竞优, 贾庆明, 陕绍云. 碳羟基磷灰石纳米材料的研究进展[J]. 材料导报, 2020, 34(13): 13084-13090.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed