Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23120208-8    https://doi.org/10.11896/cldb.23120208
  无机非金属及其复合材料 |
SiO2中间层反应连接LaCrO3陶瓷的机理及界面应力模拟研究
赵敏1, 郭洪飞1,2,*, 侯小虎1, 邬佳芳1
1 内蒙古工业大学材料科学与工程学院,呼和浩特 010051
2 内蒙古科学技术研究院先进材料与能源研究所,呼和浩特010020
Reaction Joining Mechanism and Interface Stress Simulation of LaCrO3 Ceramics with SiO2 Interlayer
ZHAO Min1, GUO Hongfei1,2,*, HOU Xiaohu1, WU Jiafang1
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Advanced Materials and Energy Institute, Inner Mongolia Academy of Science and Technology,Hohhot 010020, China
下载:  全 文 ( PDF ) ( 24112KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 合适的连接技术是提高LaCrO3陶瓷加工性能的有效方法。本工作提出以低成本SiO2粉末为中间层、利用放电等离子技术连接LaCrO3的工艺,研究了LaCrO3连接件的连接机理、显微形貌、力学性能等,并利用有限元模拟分析连接件界面应力分布状态。结果表明:LaCrO3/SiO2混合粉末(物质的量比(0.95~1.55)∶1)在1 250~1 450 ℃下复合反应生成Cr掺杂的La2Si2O7,SiO2中间层连接LaCrO3陶瓷为反应、扩散连接。在1 450 ℃时,连接件获得最高连接强度(29.3 MPa),SiO2中间层及其母材附近区域产生应力集中。SiO2可以作为辅助制造和修复复杂形状LaCrO3陶瓷的一种有潜力的连接中间层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵敏
郭洪飞
侯小虎
邬佳芳
关键词:  LaCrO3  La2Si2O7  连接  应力模拟    
Abstract: Appropriate joining technology is an effective method to improve the processing performance of LaCrO3 ceramics. In this work, a process of connecting LaCrO3 with SiO2 powder as the intermediate layer was proposed to assist in the manufacture of large parts. The connection mechanism, microstructure and mechanical properties of LaCrO3 connectors were studied. The interface stress distribution of connectors was analyzed by finite element simulation. The results show that Cr-doped La2Si2O7 is formed by the composite reaction of LaCrO3/SiO2 mixed powder ( molar ratio (0.95—1.55) ∶1 ) at 1 250—1 450 ℃. The process of SiO2 joining LaCrO3 is reaction and diffusion joining. When the joining temperature is 1 450 ℃, the highest joining strength of 29.3 MPa is obtained, and the stress concentration occurred in the SiO2 interlayer and the vicinity of the base metal. SiO2 can be used as a potential interlayer to assist in the fabrication and repair of LaCrO3 ceramics with complex shapes.
Key words:  LaCrO3    La2Si2O7    connection    stress simulation
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG497  
基金资助: 国家自然科学基金(51865044);教育部中国高校产学研创新基金-重点项目(2021ITA05005);内蒙古自治区自然科学基金(2023LHMS01013);内蒙古自治区重点研发项目(2023YFJM0007);内蒙古自治区科技创新引导项目(2022CXYD001);中央高校基本科研业务费专项资金资助(21623219);内蒙古自治区直属高校基本科研业务费项目(JY20220144);省部共建公共大数据国家重点实验室(贵州大学)联合开放基金项目(黔教技[2022]418号);贵州省教育厅联合开放基金([2022]438号)
通讯作者:  *郭洪飞,教授,博士研究生导师,内蒙古工业大学副校长、内蒙古科学技术研究院常务副院长。目前主要从事智能制造、材料加工、军民融合的研究工作。主持和参与国家各类课题40余项,发表论文70余篇、专著5本,申请和授权专利60余项(其中转让/许可14项),参编国家标准等5项。ghf-2005@163.com   
作者简介:  赵敏,2020年6月、2023年7月分别于山东理工大学和内蒙古工业大学获得工学学士学位和硕士学位。现为内蒙古工业大学材料科学与工程学院博士研究生,在郭洪飞教授的指导下进行研究。目前主要研究领域为铬酸镧陶瓷连接、高熵陶瓷方向。
引用本文:    
赵敏, 郭洪飞, 侯小虎, 邬佳芳. SiO2中间层反应连接LaCrO3陶瓷的机理及界面应力模拟研究[J]. 材料导报, 2024, 38(17): 23120208-8.
ZHAO Min, GUO Hongfei, HOU Xiaohu, WU Jiafang. Reaction Joining Mechanism and Interface Stress Simulation of LaCrO3 Ceramics with SiO2 Interlayer. Materials Reports, 2024, 38(17): 23120208-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120208  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23120208
1 Meng M Y, Liu L, Liu Y B, et al. Ceramics International, 2023, 49(10), 14997.
2 Qiu P, Yang X, Zou L, et al. ACS Applied Materials & Interfaces, 2020, 12(26), 29133.
3 Jeong H, Roehrens D, Bram M. Materials Letters, 2020, 258, 126794.
4 Guan X J, Zong S C, Tian L, et al. Catalysts, 2022, 12(10), 1123.
5 Yu L X, Wang M Y, Hou H G, et al. Applied Surface Science, 2022, 593, 153289.
6 Shinde V S, Sawant C P, Kapadnis K H. Journal of Nanostructure in Chemistry, 2019, 9(3), 231.
7 Yu Y D, Dong H Y, Ma B L. Journal of Alloys and Compounds, 2017, 708, 373.
8 Guo H F, Zhao Z Q, Chao B, et al. China Surface Enctineerinct, 2022, 35(2), 12 (in Chinese).
郭洪飞, 赵增祺, 朝宝, 等. 中国表面工程, 2022, 35(2), 126.
9 Malik R, Ryu E H, Kim Y W. International Journal of Applied Ceramic Technology, 2022, 19(2), 992.
10 Wu L X, Lin R L, Niu W B, et al. Ceramics International, 2019, 45(18), 24927.
11 He S J, Su L F, Zhan C T, et al. Ceramics International, 2023, 49(8), 12285.
12 Wang H H, Lin J H, Qi J L, et al. Journal of Materials Science & Technology, 2022, 108, 110.
13 Fang J, Sun L B, Guo S S, et al. Applied Surface Science, 2021, 568, 150951.
14 Wang Y, Cui F Z, Lu P J. Rare Metal Materials and Engineering, 2009, 38, 846.
15 Li Z R, Feng G J, Wang A Y. Journal of Materials Science & Technology, 2016, 32(11), 1111.
16 Yang J, Zhao W Q, Lin P P. Journal of Materials Science & Technology, 2023, 151, 234.
17 Kamble D L, Sahu R K, Narendranath S. Journal of Materials Engineering and Performance, DOI:10.1007/s11665-023-08390-7.
18 Zhang J K, Yan Y T, Li P X, et al. Journal of the European Ceramic Society, 2023, 43(14), 5748.
19 Li S J, Mao Y W. Powder Metallurgy Technology, 2005, 23(3), 219.
20 Dong H Y, Yu Y D, Jia X L, et al. Ceramics International, 2016, 42, 14463.
21 Dong H Y, Chen X D, Jia P W, et al. Rare Metal Materials and Engineering, 2020, 49(2), 634.
22 Qao R L, Long W M, Zhong S J, et al. Materials Reports, 2023, 37(23), 141 (in Chinese).
乔瑞林, 龙伟民, 钟素娟, 等. 材料导报, 2023, 37(23), 141.
23 Guo H F, Chen M S, Zhang Y, et al. Computer Integrated Manufacturing Systems, 2020, 26(4), 920 (in Chinese).
郭洪飞, 陈敏诗, 张瑜, 等. 计算机集成制造系统, 2020, 26(4), 920.
24 Baran I, Cinar K, Ersoy N, et al. Archives of Computational Methods in English, 2017, 24, 365.
25 Guo H F, Lian X, Zhang Y, et al. IEEE Access, 2020, 8, 115251.
26 Zhou X B, Liu Z, Li Y F, et al. Ceramics International, 2018, 44(13), 15785.
27 Jong M D, Chen W, Angsten T, et al. Scientific Data, 2015, 2, 150009.
28 Sugiura N, Otoshi S, Kajimura A, et al. Journal of Ceramics Society, 1993, 101, 749.
29 Wang Z D, Jiang S Q, Li Y, et al. Journal of Beijing Jiaotong University, 2005(1), 44 (in Chinese).
王正道, 蒋少卿, 李艳, 等. 北京交通大学学报, 2005(1), 44.
30 Gupta S, Mahapatra M K, Singh P. Materials Research Bulletin, 2013, 48(9), 3262.
31 Mori M, Hiei Y, Sammes N M. Solid State Ionics, 1999, 123(1-4), 103.
32 Zhou X J, Liu P, Han Z X, et al. Journal of Shaanxi Normal University (Natural Science Edition), 2013, 41(5), 34 (in Chinese).
周晓娟, 刘鹏, 韩赵翔, 等. 陕西师范大学学报(自然科学版), 2013, 41(5), 34.
33 Wang Z Y, Bian Y, Yang M X, et al. Journal of Materials Research and Technology, 2023, 24, 6545.
34 Cui S J, Wang H P, Mo J L, et al. Surface Technology, 2023, 52(8), 413.
[1] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[2] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[3] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[4] 焦金隆, 杨正海, 史雪飞, 宋英健, 李文勃, 孙乐民. 接触面积对H62/T2弹性接触载流摩擦副性能的影响[J]. 材料导报, 2024, 38(16): 23030298-5.
[5] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[6] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[7] 乔瑞林, 龙伟民, 钟素娟, 廖志谦, 樊喜刚, 魏永强. 原位反应在钎焊中的应用[J]. 材料导报, 2023, 37(23): 22060183-8.
[8] 陈晨, 张亮, 王曦, 李木兰. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 22010081-13.
[9] 杨杨, 凌宏杰, 刘金涛, 卢旭峰. 不同缺陷对装配式建筑钢筋灌浆套筒连接性能的影响[J]. 材料导报, 2023, 37(2): 21070022-7.
[10] 张墅野, 初远帆, 李振锋, 鲍俊辉, 张雨杨, 刘一甫, 易庆鸿, 崔澜馨, 何鹏. “后摩尔时代”芯片互连方法简析[J]. 材料导报, 2023, 37(15): 22040268-10.
[11] 李洁. 多孔富缺陷半导体应用于光催化降解废水有机污染物[J]. 材料导报, 2023, 37(12): 21110143-9.
[12] 陈楚童, 罗永明, 徐彩虹. 硅基陶瓷前驱体用于耐高温连接材料研究进展[J]. 材料导报, 2023, 37(11): 21060160-9.
[13] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[14] 隋然, 刘禄, 林巧力. 冷金属过渡条件下4043铝合金分别在镀锌钢和镀锡钢表面的润湿行为[J]. 材料导报, 2022, 36(15): 21070041-5.
[15] 王晓昱, 贾建刚, 刘第强, 巨佳康, 柴昌盛, 季根顺. 基于Si-CaO/Al2O3-Si三明治结构的碳/碳复合材料高强度扩散连接[J]. 材料导报, 2022, 36(13): 21040028-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed