Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22100282-7    https://doi.org/10.11896/cldb.22100282
  金属与金属基复合材料 |
湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响
贾宝惠1,*, 任鹏2, 宋挺2, 崔开心2, 肖海建3
1 中国民航大学交通科学与工程学院,天津 300300
2 中国民航大学航空工程学院,天津 300300
3 中国民航大学安全科学与工程学院,天津 300300
Effect of End-to-diameter Ratio on Static Tensile Failure of Composite Bolted Joints Under Hygrothermal Environment
JIA Baohui1,*, REN Peng2, SONG Ting2, CUI Kaixin2, XIAO Haijian3
1 College of Transportation Science and Engineering,Civil Aviation University of China,Tianjin 300300,China
2 College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China
3 College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China
下载:  全 文 ( PDF ) ( 18365KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究湿热环境下复合材料螺栓连接结构的静力拉伸性能,通过对七种不同端径比的T300碳纤维复合材料单钉单剪螺栓连接结构进行静力拉伸试验,得到不同端径比的连接结构在25 ℃干态(RTD)和70 ℃平衡吸湿(ETW)环境下极限失效载荷和破坏强度的变化规律,揭示了接头的破坏模式;建立复合材料单钉单剪螺栓连接有限元模型,对比不同端径比的连接结构试验的极限失效载荷,得到最优端径比为3;研究了湿热环境下最优端径比的连接结构不同铺层的损伤形式。结果表明,端径比从1增大到3时,RTD和ETW环境下连接结构的极限失效载荷分别增加了1.1倍和1倍,破坏强度均增加了1倍,当端径比从3增大到4时,RTD和ETW环境下极限失效载荷分别降低了6.56%和9.08%,破坏强度分别降低了6.83%和9.35%;在最优端径比下,与RTD环境下相比,ETW环境下连接结构的极限失效载荷和破坏强度分别下降了9.25%和9.52%,并且层合板孔周的压缩损伤更严重,存在更明显的纤维束拔起及纤维碎裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾宝惠
任鹏
宋挺
崔开心
肖海建
关键词:  复合材料  湿热环境  端径比  螺栓连接  单钉单剪  静力拉伸    
Abstract: In order to study the static properties of the carbon fiber reinforced composite (CFRP) bolted joint structure under hygrothermal environment,the static tensile tests of the T300 composite single-bolt single-lap bolted jointed structure with different end-to-diameter ratios were conducted,and the failure mode of the joint was revealed by the variation of the ultimate failure load and the failure strength of the 25 ℃ room temperature dry (RTD) and 70 ℃ equilibrium temperature wet (ETW) environment with different end-to-diameter ratios.A finite element model of composite single-bolt single-lap bolted connection was established,and the optimal end-to-diameter ratio of 3 was obtained by comparing it with the test.The damage forms of different plies of the optimal end-to-diameter ratio connection structure in the hygrothermal environment were studied.The results show that when the end-to-diameter ratio is increased from 1 to 3,the ultimate failure load of the connection structure under the RTD and ETW environments is increased by 1.1 times and 1 times respectively,the failure strength is increased by 1 times,and when the end-to-diameter ratio is increased from 3 to 4,the ultimate failure load in the RTD and ETW environments is reduced by 6.56% and 9.08% respectively,the failure intensity is reduced by 6.83% and 9.35% respectively.When the optimal end-to-diameter ratio is 3,the ultimate failure load and failure strength of the connection structure in the ETW environment are reduced by 9.25% and 9.52% respectively,compared with the RTD environment.By scanning electron microscopy,it was found that the compression damage around the hole of the laminate plate under the ETW environment was more severe,and more obvious fiber bundle uplift and fiber fragmentation could be found.
Key words:  composite    hygrothermal environment    end-to-diameter ratio    bolted joint    single-bolt single-lap    static tensile
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  V214  
基金资助: 国家自然科学基金(U2033209)
通讯作者:  *贾宝惠,中国民航大学交通科学与工程学院教授、博士研究生导师。1992于中国民航大学获得学士学位,2000年于南京航空航天大学获得硕士学位,主要研究方向为航空器维修与适航技术、健康管理。主持国家自然科学基金联合基金重点项目、工信部民机重大专项、民航局科技创新重大专项等科研项目30余项,发表高水平学术论文40余篇,授权专利5项,主持制定并发布实施民航行业标准1部。 2474295174@qq.com   
引用本文:    
贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
JIA Baohui, REN Peng, SONG Ting, CUI Kaixin, XIAO Haijian. Effect of End-to-diameter Ratio on Static Tensile Failure of Composite Bolted Joints Under Hygrothermal Environment. Materials Reports, 2024, 38(5): 22100282-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100282  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22100282
1 Li J, Chen X B. Materials Reports, 2022, 36(14), 206(in Chinese).
李军, 陈祥宝. 材料导报, 2022, 36(14), 206.
2 Feng Z H, Li J N, Tian Y L, et al. Acta Materiae Compositae Sinica, 2022, 39(9), 4187(in Chinese).
冯志海, 李俊宁, 田跃龙, 等. 复合材料学报, 2022, 39(9), 4187.
3 Loeliger A, Yang E, Bomphray I. In:26th International Conference on Automation and Computing(ICAC). University of Portsmouth, UK, 2021.
4 Delzendehrooy F, Akhavan-Safar A, Barbosa A Q, et al. Journal of Advanced Joining Processes, 2022, 5, 100098.
5 Sivakumar D M, Lin F N, Chew R M, et al. International Review of Mechanical Engineering, 2017, 11(2), 138.
6 Li M Z, Liu Z P, Yan R J, et al. Marine Structures, 2022, 85, 103259.
7 Lee Y G, Choi E, Yoon S J. Composites Part B: Engineering, 2015, 75, 1.
8 Awadhani L V, Bewoor A K. Materials Today: Proceedings, 2017, 4(8), 7345.
9 Meziere Y, Bunsell A R, Favry Y, et al. Composites Part A, 2005, 36(12), 1627.
10 Chen H S. Composite Structures, 2001, 52(3-4), 295.
11 Zhang J R, Shan M J, Huang W, et al. Acta Materiae Compositae Sinica, 2021, 38(7), 10(in Chinese).
张娇蕊, 山美娟, 黄伟, 等. 复合材料学报, 2021, 38(7), 10.
12 Du Y, Ma Y E. Acta Materiae Compositae Sinica, 2022, 39(2), 431(in Chinese).
杜永, 马玉娥. 复合材料学报, 2022, 39(2), 431.
13 Shan M J, Zhao L B, Liu F R, et al. Composite Structures, DOI:10. 1016/j. compstruct. 2020. 112166.
14 Wu Q Q. Research on the influence of temperature and humidity upon the strength of composite bolted joints. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2018(in Chinese).
吴婧婧. 温度和湿度对复合材料螺栓连接强度影响研究. 硕士学位论文, 南京航空航天大学, 2018.
15 Laszlo P, George S. Mechanics of composite structures, Cambridge University Press, Britain, 2003.
16 Camanho P P, Matthews F L. Journal of Composite Materials, 1999, 33(24), 2248.
17 Zhang J Y, Zhou L W, Chen Y L, et al. Journal of Composite Materials, 2016, 50(16), 2271.
18 Shan M J, Zhao L B, Hong H M, et al. International Journal of Fatigue, 2018, 111, 299.
19 Conshohocken W. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials, ASTM D5229M-14, ASTM International, 2014.
20 Liu W, Yu F, He Z, et al. Modelling and Simulation in Materials Science and Engineering, 2019, 27(6), 065011.
21 Cooper C, Turvey G J. Composite Structures, 1995, 32(1-4), 217.
[1] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[2] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[3] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[4] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[5] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[6] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[7] 马昕, 刘海韬, 姜如, 孙逊. He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用[J]. 材料导报, 2024, 38(3): 22100252-7.
[8] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[9] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[10] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[11] 李文龙, 支云飞, 陈泽文, 陕绍云, 李梦蕊. 纤维素-金属氧化物在传感器中的应用研究进展[J]. 材料导报, 2024, 38(3): 22060031-8.
[12] 张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
[13] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[14] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[15] 赵新涛, 姜宁, 王明道, 李骏腾, 李迪, 谭洪生. 纤维增强热塑性复合材料拉挤成型工艺研究进展[J]. 材料导报, 2024, 38(1): 22050237-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed