Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22080059-9    https://doi.org/10.11896/cldb.22080059
  无机非金属及其复合材料 |
冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究
张学鹏1, 张戎令1,2,*, 杨斌3, 肖鹏震1, 王小平1, 龙朝飞1
1 兰州交通大学土木工程学院,兰州 730070
2 兰州交通大学道桥工程灾害防治技术国家地方联合工程实验室,兰州 730070
3 中国铁路建设管理有限公司,北京 100161
Research on Strength Evolution and Prediction Model of Early-age Concrete Under the Coupling Action of Freeze-Thaw and Sulfate Corrosion
ZHANG Xuepeng1, ZHANG Rongling1,2,*, YANG Bin3, XIAO Pengzhen1, WANG Xiaoping1, LONG Zhaofei1
1 College of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 Bridge Engineering National Local Joint Engineering Laboratory of Disaster Prevention and Contral Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
3 China Railway Construction Management Co., Ltd., Beijing 100161, China
下载:  全 文 ( PDF ) ( 7504KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究冻融-硫酸盐腐蚀耦合作用对早龄期混凝土力学性能的影响,基于新疆若羌地区实际环境条件,对三种水胶比的早龄期混凝土分别进行冻融循环、硫酸盐腐蚀、冻融-硫酸盐腐蚀耦合作用工况下的耐久性试验,分析不同环境作用工况与水胶比交互作用下早龄期混凝土强度经时演变规律和作用机制。同时,基于灰色系统理论与遗传算法,建立早龄期混凝土强度的变权缓冲GM(1,1)模型。研究结果表明:同环境作用工况下,随冻融循环次数增加,早龄期混凝土抗蚀系数均出现先增大后减小的变化规律,并且在腐蚀终期,水胶比与早龄期混凝土抗蚀系数呈负相关。在同水胶比条件下,相较于单一冻融循环工况,冻融-硫酸盐腐蚀耦合作用工况对早龄期混凝土抗蚀系数终值的影响程度更高。早龄期混凝土强度预测模型的最大平均预测误差仅为1.893%,具有较好的预测精度,可为寒冷、盐渍土地区混凝土结构服役状态评估提供参考;通过预测模型对不同环境作用工况下早龄期混凝土进行耐久性评估,可知:冻融循环作用下,0.26、0.32、0.38水胶比的早龄期混凝土预测服役寿命分别是75.3 a、24.6 a、15.3 a,而在冻融-硫酸盐腐蚀耦合作用工况下,同水胶比下早龄期混凝土预测服役寿命缩短至30.7 a、22 a、12.7 a。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张学鹏
张戎令
杨斌
肖鹏震
王小平
龙朝飞
关键词:  冻融-硫酸盐腐蚀耦合  早龄期混凝土  强度演变规律  遗传算法  变权缓冲 GM(1,1)    
Abstract: In order to study the coupling action of freeze-thaw and sulfate corrosion on the mechanical properties of early-age concrete, in this study, three early-age concrete tests with water-binder ratios based on the actual environmental conditions in Ruoqiang area of Xinjiang Province were carried out, namely, freeze-thaw cycle, sulfate corrosion and freeze-thawing sulfate corrosion coupling test, therefore the time evolution law and action mechanism of early-age concrete strength under different environmental action conditions and water-binder ratio interaction were analyzed. Meanwhile, this study based on grey system theory and genetic algorithm, the variable weight buffer GM (1, 1) model of early-age concrete strength was established. The results show that the corrosion resistance coefficient of early-aged concrete increases first and then decreases with the increase of the number of freeze-thaw cycles under the same environmental working conditions, and the water-binder ratio is negatively correlated with the corrosion resistance coefficient of early-aged concrete in the final corrosion period. Under the condition of the same water-binder ratio, compared with the single freeze-thaw cycle condition, the freeze-thaw-sulfate corrosion coupling condition has a higher impact on the final value of corrosion resistance coefficient of early-age concrete. The maximum average prediction error of the early-age concrete strength prediction model is only 1.893%, which has a good prediction accuracy, and would provide a reference for the evaluation of the service state of concrete structures in cold and saline soil areas. By evaluating the durability of early-age concrete under different environmental working conditions with the prediction model, the study concluded that: the predicted service life of early-age concrete with water-binder ratio of 0.26, 0.32 and 0.38 is respectively 75.3 a, 24.6 a and 15.3 a under the freeze-thaw cycle, while the predicted service life of early-age concrete with water-bin-der ratio is reduced to 30.7 a, 22 a and 12.7 a under the coupled freeze-thaw and sulfate corrosion condition.
Key words:  coupling action of freeze-thaw and sulfate corrosion    early-age concrete    strength evolution law    genetic algorithm    variable weight buffer operator GM (1,1)
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528.4  
基金资助: 国家自然科学基金(52068042;U2368209);中国国家铁路集团有限公司科技研究开发计划(K2021G025);甘肃省优秀博士生项目(23JRRA144)
通讯作者:  *张戎令,博士毕业于兰州交通大学,现为兰州交通大学教授,加拿大渥太华大学访问学者、英国卡迪夫大学高级研究学者、中国钢结构协会桥梁钢结构分会理事、中国腐蚀与防护学会铁道实施专业委员会委员、中国公路学会青年专家委员会委员,入选中国科协青年人才托举工程、飞天学者特聘计划-青年学者。主要从事西北干寒地区材料耐久性与结构全寿命研究,近五年在该领域发表SCI论文/EI学术论文32篇。 mogzrlggg@163.com   
作者简介:  张学鹏,兰州交通大学土木工程学院在读硕士研究生,师承张戎令教授,从事西北干寒地区材料耐久性与结构全寿命研究。
引用本文:    
张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
ZHANG Xuepeng, ZHANG Rongling, YANG Bin, XIAO Pengzhen, WANG Xiaoping, LONG Zhaofei. Research on Strength Evolution and Prediction Model of Early-age Concrete Under the Coupling Action of Freeze-Thaw and Sulfate Corrosion. Materials Reports, 2024, 38(5): 22080059-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080059  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22080059
1 Xu Q, Zhou T Q, Hua Y, et al. Journal of Railway Science and Engineering, 2022, 19(1), 151 (in Chinese).
徐倩, 周太全, 华渊, 等. 铁道科学与工程学报, 2022, 19(1), 151.
2 Zhao G W, Li J P, Shi M, et al. Construction and Building Materials, 2020, 248(C), 118683.
3 Liu D Y. Experimental study on durability performance of concrete subjected to early-age freeze-thaw damage. Master's Thesis, Southeast University, China, 2020 (in Chinese).
刘东运. 早龄期冻融损伤混凝土耐久性能试验研究. 硕士学位论文, 东南大学, 2020.
4 Gan L, Wu J, Shen Z Z, et al. Chinese Journal of Civil Engineering, 2021, 54(11), 37 (in Chinese).
甘磊, 吴健, 沈振中, 等. 土木工程学报, 2021, 54(11), 37.
5 Gao J M, Yu Z X, Song L G, et al. Construction and Building Materials, 2013, 39.
6 Liu J L, Jia Y M, Wang J W, et al. Journal of Harbin Engineering University, 2018, 39(10), 1625 (in Chinese).
刘金亮, 贾艳敏, 王佳伟, 等. 哈尔滨工程大学学报, 2018, 39(10), 1625.
7 Jiang L, Niu D T. Journal of Central South University (Natural Science Edition), 2016, 47(9), 3208 (in Chinese).
姜磊, 牛荻涛. 中南大学学报(自然科学版), 2016, 47(9), 3208.
8 Ge Y, Yang W C, Yuan J, et al. Journal of Southeast University (Natural Science Edition), 2006(S2), 234 (in Chinese).
葛勇, 杨文萃, 袁杰, 等. 东南大学学报(自然科学版), 2006(S2), 234.
9 Diao B, Sun Y, Cheng S H, et al. Journal of Cold Regions Engineering, 2011, 25(1), 37.
10 Mu R, Miao C W, Liu J P, et al. Journal of the Silicates, 2001(6), 523 (in Chinese).
慕儒, 缪昌文, 刘加平, 等. 硅酸盐学报, 2001(6), 523.
11 Liu J Z, Sun W, Miao C W, et al. Journal of Southeast University (Na-tural Science Edition), 2006(S2), 243 (in Chinese).
刘建忠, 孙伟, 缪昌文, 等. 东南大学学报(自然科学版), 2006(S2), 243.
12 Zheng X N, Diao B, Sun Y, et al. Journal of Building Structures, 2010, 31(2), 111 (in Chinese).
郑晓宁, 刁波, 孙洋, 等. 建筑结构学报, 2010, 31(2), 111.
13 Zhang Y Q, Yu H F, Sun W, et al. Civil Construction and Environmental Engineering, 2010, 32(6), 147 (in Chinese).
张云清, 余红发, 孙伟, 等. 土木建筑与环境工程, 2010, 32(6), 147.
14 Chu H Y, Chen J K. Construction and Building Materials, 2013, 39, 46.
15 Lei M F, Peng L M, Shi C H. Journal of Central South University(Science and Technology), 2015, 46(8), 3092 (in Chinese).
雷明锋, 彭立敏, 施成华. 中南大学学报(自然科学版), 2015, 46(8), 3092.
16 Feng Z J, Chen S X, Xu H, et al. Journal of Transportation Enginee-ring, 2018, 18(6), 18 (in Chinese).
冯忠居, 陈思晓, 徐浩, 等. 交通运输工程学报, 2018, 18(6), 18.
17 Zhang Y Z, Fan Y F, Zhao Y H. Journal of Building Materials, 2007(4), 397 (in Chinese).
张英姿, 范颖芳, 赵颖华. 建筑材料学报, 2007(4), 397.
18 Li B X, Yuan X L, Cui G, et al. Journal of the Silicates, 2009, 37(12), 2112 (in Chinese).
李北星, 袁晓露, 崔巩, 等. 硅酸盐学报, 2009, 37(12), 2112.
19 Li K Q, Hu Y F, Han B, et al. Journal of Central South University(Science and Technology), 2021, 52(5), 1581 (in Chinese).
李克庆, 胡亚飞, 韩斌, 等. 中南大学学报(自然科学版), 2021, 52(5), 1581.
20 Zhang X B, Zhang R L, Ning G X, et al. Journal of Railway Science and Engineering, 2021, 18(6), 1471 (in Chinese).
张新博, 张戎令, 宁贵霞, 等. 铁道科学与工程学报, 2021, 18(6), 1471.
21 Lu C G, Wei Z Q, Qiao H X, et al. Journal of Central South University(Science and Technology), 2021, 52(3), 1017 (in Chinese).
路承功, 魏智强, 乔宏霞, 等. 中南大学学报(自然科学版), 2021, 52(3), 1017.
22 Kewalramani M A, Gupta R. Automation in Construction, 2006, 15(3), 374.
23 Xu Z Q. Experimental research on mechanical properties of early age concrete materials and structures. Ph. D. Thesis, Beijing Jiaotong University, China, 2016 (in Chinese).
徐仲卿. 早龄期混凝土材料与构件力学性能试验研究. 博士学位论文, 北京交通大学, 2016.
24 Ministry of Housing and Urban-Rural Development of the People's. Concrete physical and mechanical properties test method standards: GB/T 50081-2019. China Architecture and Building Press, 2019 (in Chinese).
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081-2019. 中国建筑工业出版社, 2019.
25 Qiao H X, Zhu B R, Chen D S. Journal of Applied Basic and Enginee-ring Sciences, 2017, 25(4), 805 (in Chinese).
乔宏霞, 朱彬荣, 陈丁山. 应用基础与工程科学学报, 2017, 25(4), 805.
26 Sun D S, Cheng X X, Liu K W, et al. Materials Reports, 2018, 32(23), 4135 (in Chinese).
孙道胜, 程星星, 刘开伟, 等. 材料导报, 2018, 32(23), 4135.
27 Wang D P, Wang B W. Grid Technology, 2013, 37(1), 167 (in Chinese).
王大鹏, 汪秉文. 电网技术, 2013, 37(1), 167.
28 Wu H R, Jin W L, Yan Y D, et al. Journal of Zhejiang University (Engineering Science), 2012, 46(4), 650 (in Chinese).
武海荣, 金伟良, 延永东, 等. 浙江大学学报(工学版), 2012, 46(4), 650.
29 Yu J Q, Qiao H X, Zhu F F, et al. Journal of Building Materials, 2021, 32(4), 185(in Chinese).
于剑桥, 乔宏霞, 朱飞飞, 等. 建筑材料学报, 2021, 32(4), 185.
[1] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[2] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[3] 黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed