Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22110077-6    https://doi.org/10.11896/cldb.22110077
  金属与金属基复合材料 |
等轴晶AZ80镁合金的全场晶体塑性模拟研究
胡鸿彪1, 徐帅2, 章海明2, 金朝阳1,*
1 扬州大学机械工程学院,江苏 扬州 225100
2 上海交通大学材料科学与工程学院,上海 200030
Full-field Crystal Plasticity Simulation of Equiaxed AZ80 Magnesium Alloy
HU Hongbiao1, XU Shuai2, ZHANG Haiming2, JIN Zhaoyang1,*
1 School of Mechanical Engineering, Yangzhou University, Yangzhou 225100, Jiangsu, China
2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
下载:  全 文 ( PDF ) ( 11893KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对铸态AZ80镁合金进行405 ℃,24 h的固溶处理、等径角挤压(Equal channel angular pressing, ECAP)实验,并使用全场晶体塑性模拟(Full-field crystal plasticity simulation)探究试样在拉伸变形过程中的微观演化。晶体塑性模拟可以更加便捷地获得相对准确的微观变形机制、孪晶演变等更加全面的现场数据,以此总结出不同物理量的规律,这些优势在实验表征过程中是较难实现的,且在追踪试样变形过程中起到重要作用。研究发现,试样经ECAP之后会形成细晶均匀组织,屈服强度和抗拉强度分别达到215.1 MPa、381.5 MPa,延伸率为20.1%,显著高于铸态AZ80的性能(屈服强度为118.6 MPa,抗拉强度为162.68 MPa,延伸率为6.6%);同时通过模拟可以很好地预测不同应变量下镁合金微观组织和变形机制的演化规律,发现随着应变的增加,内部出现拉伸孪晶的晶粒中会发生Basinski效应,同时在硬取向区域形成剪切带;在变形过程中,基面滑移是主要变形机制,并在拉伸达到4%时其对变形的贡献有所下降,其下降部分主要由柱面滑移补偿。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡鸿彪
徐帅
章海明
金朝阳
关键词:  AZ80  细晶  等径角挤压  全场晶体塑性模拟    
Abstract: The as-cast AZ80 magnesium alloy was subjected to solid solution treatment at 405℃ for 24 hours, ECAP experiments,and the micro-evolution of the sample during tensile deformation was investigated using full-field crystal plasticity simulation. More comprehensive field data such as relatively accurate microscopic deformation mechanism and twin evolution can be obtained more conveniently by crystal plasticity simulation, and the laws of different physical quantities can be summarized accordingly. These advantages are difficult to achieve in the experimental characterization process, and play an important role in tracking the deformation process of the sample.It was found that after ECAP, the sample would form a small grain uniform structure. The yield strength and tensile strength reached 215.1 MPa and 381.5 MPa, respectively, and the plasticity was 20.1%, which was significantly higher than that of as-cast AZ80 (yield strength 118.6 MPa, tensile strength 162.68 MPa, plasticity 6.6%). At the same time, the simulation can well predict the evolution of microstructure and deformation mechanism of magnesium alloy under different strain variables. It is found that with the increase of strain, Basinski effect will occur in the grains with tensile twins, and shear bands will be formed in the hard-oriented region. In the deformation process, the basal slip is the main deformation mechanism, and the contribution to the deformation decreases when the strain reaches 4%, which is mainly compensated by the prismatic slip.
Key words:  AZ80    fine equiaxed crystals    equal channel angular pressing(ECAP)    full-field crystal plasticity simulation
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TG146.22  
基金资助: 国家自然科学基金 (51901202)
通讯作者:  * 金朝阳,扬州大学机械工程学院教授、硕士研究生导师。目前主要从事:(1)材料成形过程建模仿真;(2)金属热变形过程微观组织演变与预报;(3)以难变形金属高性能精密成形为研究目标,将实验研究和建模仿真相结合,建立热塑性变形过程本构关系、组织演变的数学模型,为基于建模仿真的数字化精确成形制造提供有指导意义的理论基础和分析手段。发表论文30余篇,包括Materials Science and Engineering A、Computational Materials Science、Journal of Materials Science & Technology等期刊。zyjin@yzu.edu.cn   
作者简介:  胡鸿彪,2020年6月于扬州大学获得学士学位,2023年6月获得扬州大学工学硕士学位。目前主要研究领域为高性能镁合金制备。
引用本文:    
胡鸿彪, 徐帅, 章海明, 金朝阳. 等轴晶AZ80镁合金的全场晶体塑性模拟研究[J]. 材料导报, 2024, 38(9): 22110077-6.
HU Hongbiao, XU Shuai, ZHANG Haiming, JIN Zhaoyang. Full-field Crystal Plasticity Simulation of Equiaxed AZ80 Magnesium Alloy. Materials Reports, 2024, 38(9): 22110077-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110077  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22110077
1 Ding W J, Wu Y J, Peng L M, et al. Materials China, 2010, 29(08), 37 (in Chinese).
丁文江, 吴玉娟, 彭立明, 等. 中国材料进展, 2010, 29(08), 37.
2 Kainer K U, Hoppe R, Bohlen J, et al. Materials Science Forum, 2015, 4132(828-829), 15.
3 Yang Z, Li J P, Zhang J X, et al. Acta Metallurgica Sinica (English Letters), 2008, 21(5), 313.
4 Meng L G. Researches on formation mechanism of the LPSO structure, microstructures and mechanical properties of the Mg-Gd-Y-Zn-Zr alloys. Ph.D. Thesis, Dalian University of Technology, China, 2014 (in Chinese).
孟令刚. Mg-Gd-Y-Zn-Zr合金长周期结构形成机制与组织性能研究. 博士学位论文, 大连理工大学, 2014.
5 Kang Z X, Peng Y H, Lai X M, et al. The Chinses Journal of Nonferrous Metals, 2010, 20(04), 587 (in Chinese).
康志新, 彭勇辉, 赖晓明, 等. 中国有色金属学报, 2010, 20(04), 587.
6 Kubota K, Mabuchi M, Higashi K. Journal of Materials Science, 1999, 34(10), 2255.
7 Yamashita A, Horita Z, Langdon T G. Materials Science & Engineering A, 2001, 300(1-2), 142.
8 Janecek M, Popov M, Krieger M G, et al. Materials Science & Enginee-ring A, 2006, 462(01), 116.
9 Wang F, Sandlöbes S, Diehl M, et al. Acta Materialia, 2014, 80, 77.
10 Wang H, Boehlert C J, Wang Q D, et al. International Journal of Plasti-city, 2016, 84, 255.
11 Zhou G, Jain M K, Wu P, et al. International Journal of Plasticity, 2016, 79, 19.
12 Huang W, Huo Q, Fang Z, et al. Materials Science & Engineering A, 2018, 710, 289.
13 Zhang H, Liu J, Sui D, et al. International Journal of Plasticity, 2018, 100, 69.
14 Guery A, Hild F, Latourte F, et al. International Journal of Plasticity, 2016, 81, 249.
15 Abdolvand H, Majkut M, Oddershede J, et al. Acta Materialia, 2015, 93, 235.
16 Roters F, Diehl M, Shanthraj P, et al. Computational Materials Science, 2019, 158, 420.
17 Salem A A, Kalidindi S R, Semiatin S L. Acta Materialia, 2005, 53(12), 3495.
18 Agnew S R, Brown D W, Tomé C N. Acta Materialia, 2006, 54(18), 4841.
19 Tromans D. International Journal of Research & Reviews in Applied Sciences, 2011, 6(04), 462.
20 Knezevic M, Levinson A, Hars R, et al. Acta Materialia, 2010, 58(19), 6230.
21 Kobayashi T, Koike J, Yoshida Y, et al.Journal of the Japan Institute of Metals, 2003, 67(04), 149.
22 Basinski Z S, Szczerba M S, Niewczas M, et al. Fysiatrick A Reumatologick Vestník, 2017, 58(09), 198.
[1] 殷晓龙, 王志林, 王婉, 于贺春, 王汉斌, 闫文杰. 深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究[J]. 材料导报, 2023, 37(22): 22070192-6.
[2] 赵嘉豪, 庞玉华, 孙琦, 牛犇, 刘东, 张喆. 剧烈扭转压缩轧制45钢超细晶棒组织演变机理[J]. 材料导报, 2023, 37(15): 22010069-5.
[3] 张磊, 邢志国, 王海斗, 郭伟玲, 李国禄, 黄艳斐, 张执南. 脉冲磁场对合金凝固过程影响的研究进展[J]. 材料导报, 2023, 37(14): 21090053-11.
[4] 石玉, 李正宁, 盛捷, 喇培清. 纳米高强钢铁材料增塑研究进展[J]. 材料导报, 2021, 35(7): 7155-7161.
[5] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[6] 宋扬, 刘丽华, 张中武. 钛微合金化低碳钢的研究进展[J]. 材料导报, 2021, 35(15): 15175-15182.
[7] 滕树满, 滕海灏. 等通道挤压制备铝基细晶材料的研究进展[J]. 材料导报, 2020, 34(Z1): 345-350.
[8] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[9] 何承绪, 马光, 陈新, 杨富尧, 程灵, 杨勇杰, 胡卓超, 孟利. 低温薄规格取向硅钢初次再结晶组织对二次再结晶行为的影响[J]. 材料导报, 2020, 34(Z1): 457-461.
[10] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[11] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[12] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[13] 王永强, 朱国辉, 陈其伟, 丁汉林, 万德成. 高强度超细晶金属材料塑性行为及增塑研究进展[J]. 材料导报, 2018, 32(19): 3414-3422.
[14] 薛克敏, 薄冬青, 王薄笑天, 刘梅, 李萍. 7A60铝合金ECAP过程第二相演化行为及机理[J]. 材料导报, 2018, 32(18): 3195-3198.
[15] 施 麒, Yau Yau Tse, Rebecca Higginson, 陈 峰, 陶麒鹦. 退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1577-1581.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed