Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21090053-11    https://doi.org/10.11896/cldb.21090053
  金属与金属基复合材料 |
脉冲磁场对合金凝固过程影响的研究进展
张磊1,2, 邢志国2, 王海斗2,3, 郭伟玲2, 李国禄1,*, 黄艳斐2,*, 张执南4
1 河北工业大学材料科学与工程学院,天津 300401
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
4 上海交通大学机械与动力工程学院,上海 200240
Research Progress of the Effect of Pulsed Magnetic Field on the Solidification Process of Alloys
ZHANG Lei1,2, XING Zhiguo2, WANG Haidou2,3, GUO Weiling2, LI Guolu1,*, HUANG Yanfei2,*, ZHANG Zhinan4
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2 National Key Laboratory for Remanufacturing, Academy of Army Armored Force, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Academy of Army Armored Force, Beijing 100072, China
4 School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 47881KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁场影响合金凝固过程的相关技术自20世纪70年代出现以来,发展至今已衍生出脉冲、稳恒、旋转等多种磁场形式。其中,脉冲磁场因其瞬时场强高、非接触、场强易于控制而引起了学界的大量研究。脉冲磁场对合金凝固过程的影响主要体现在:晶粒形貌转变与细化;合金内部相结构与成分发生改变;合金凝固后宏观缺陷得到改善。
目前,学者们对上述现象的内在机理进行了探索。由脉冲磁场引发的熔体强制对流可以将凝固过程中在模具金属型内壁激冷形核的细小晶粒不断从金属型撕下并运往熔体内部,促进晶粒细化,从而抑制晶粒长大。同时,脉冲磁场能降低形核能垒,提升形核率。脉冲磁场引起的焦耳热效应一方面能延长凝固时间,防止熔体表面过快固化;但焦耳热的积累也会导致晶核熔化进而降低形核率。已有大量将脉冲磁场应用于高温合金、Mg合金以及Al合金等对生产生活影响重大的合金的报道。但该技术距离大规模工业化应用还有一段距离。
本文分别从脉冲磁场对合金凝固组织的影响、脉冲磁场对合金凝固过程的动态影响机理和脉冲磁场在不同合金凝固过程中的具体应用情况共三个方面系统性地介绍脉冲磁场对合金凝固过程的影响,分析了脉冲磁场处理合金凝固技术的优势与不足,并对该技术的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张磊
邢志国
王海斗
郭伟玲
李国禄
黄艳斐
张执南
关键词:  脉冲磁场  合金凝固  细晶强化    
Abstract: Since the 1970s when magnetic field technologies were used in alloy solidification processes, several types of magnetic fields such as pulsed, steady, and rotating fields have been developed. Among them, the pulsed magnetic field has attracted considerable research attention owing to its high instantaneous field strength, non-contact nature, and ease of control. The effect of the pulsed magnetic field on the solidification of the alloy is reflected mainly in the changes in grain morphology and grain refinement. The phase structure and composition of the alloy are changed. The macroscopic defects of the alloy improve after solidification.
In the present work, the internal mechanism of the above phenomena has been explored. The forced convection induced by a pulsed magnetic field can continuously tear off the fine grains that cool and cause nucleation in the inner wall of the metal mold during solidification. The field transports the torn off grains to the interior of the melt zone, thus promoting grain refinement and inhibiting grain growth. At the same time, the pulsed magnetic field can reduce the nucleation barrier and improve the nucleation rate. On the one hand, the Joule heating effect caused by the pulsed magnetic field can increase the solidification time and prevent the melt surface from curing too fast. However, the accumulation of Joule heat can also lead to nucleation melting and a decrease in the nucleation rate. There have been a number of reports about the application of pulsed magnetic fields to superalloys, Mg alloys and Al alloys, which have wide application in industry. However, the technology is not mature enough for large-scale industrial application.
In this paper, the application of a pulsed magnetic field to alloy solidification is explored from three angles, namely, the effects of the pulsed magnetic field on the solidification structure of alloys, their underlying dynamic mechanisms, and the application of such magnetic fields in the different alloy solidification processes. Moreover, the relative advantages and disadvantages of this technology, as well as the future prospects are also explained.
Key words:  pulsed magnetic field    alloy solidification    fine grain strengthening
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG244  
基金资助: 国家自然科学基金(52275227);基础加强计划重点基础研究项目(2019-JCJQ-JJ-034;2019-JCJQ-ZD-302)
通讯作者:  *李国禄,河北工业大学材料科学与工程学院教授、博士研究生导师。1988年毕业于西安交通大学,获学士学位;1991年毕业于河北工业大学,获硕士学位;1999年于清华大学获得工学博士学位,研究方向为摩擦磨损与表面工程;1991年入职河北工业大学工作,历任讲师、副教授、教授。主要从事再制造领域相关的摩擦学及表面工程、铸造耐磨合金及成型工艺方面的研究。近年来,先后发表各种学术论文100余篇,其中SCI收录40余篇,EI收录70余篇。获得国家发明专利20余项,主编或参与编写教材和著作等出版物5部。黄艳斐,再制造技术国家重点实验室助理研究员。2011年7月在北京航空航天大学取得硕士学位。主要从事表面工程与再制造工程方面的教学与科研工作,发表论文20余篇;主编著作1部,参编著作2部;授权国家发明专利2项。liguolu@hebut.edu.cn;279202093@qq.com   
作者简介:  张磊,2018年6月毕业于天津科技大学,获得工学学士学位。现为河北工业大学材料科学与工程学院博士研究生,在李国禄教授的指导下进行研究。目前主要研究领域为脉冲磁场强化热喷金属涂层。
引用本文:    
张磊, 邢志国, 王海斗, 郭伟玲, 李国禄, 黄艳斐, 张执南. 脉冲磁场对合金凝固过程影响的研究进展[J]. 材料导报, 2023, 37(14): 21090053-11.
ZHANG Lei, XING Zhiguo, WANG Haidou, GUO Weiling, LI Guolu, HUANG Yanfei, ZHANG Zhinan. Research Progress of the Effect of Pulsed Magnetic Field on the Solidification Process of Alloys. Materials Reports, 2023, 37(14): 21090053-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090053  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21090053
1 Wang T, Semenov S, Wang E, et al. IOP Conference Series Materials Science and Engineering, 2020, 861, 012026.
2 Vandersluis E, Ravindran C. Journal of Materials Science, 2019, 54, 4325.
3 Coleman J, Krane M. IOP Conference Series Materials Science and Engineering, 2020, 861, 012044.
4 He T, Xu Y, Huo Y, et al. Materials Express, 2020, 10(7), 1109.
5 Li Y, Tang Y, Zhao W, et al. Journal of Materials Science, 2020, 55(16), 7039.
6 Getselev Z N. Journal of Metals, 1971, 23(10), 38.
7 Vives C. Metallurgical and Materials Transactions B, 1989, 20(5), 623.
8 Luo L, Xia H, Luo L, et al. Advanced Engineering Materials, DOI:10. 1002/adem. 202000561.
9 Hou L, Dai Y, Fautrelle Y, et al. Acta Materialia, 2020, 199, 383.
10 Liu C, Zhong Y, Shen Z, et al. Journal of Materials Research, 2019, 34(24), 1.
11 Li L, Suo Y, Liu T, et al. Crystal Growth & Design, 2019, 19(11), 6448.
12 Li L, Zhang R, Ban C, et al. Materials Characterization, 2019, 151, 191.
13 Hasegawa M, Maruhashi S, Muranaka Y, et al. Tetsu-to-Hagane, 2009, 67(8), 1354.
14 Sivarupan T, Caceres C H, Taylor J A. Metallurgical & Materials Tran-sactions A, 2013, 44, 4071.
15 Jie Z Q, Zhang J, Huang T W, et al. China Foundry, 2016, 13(2), 101.
16 Xiong Y, Wei X Y, Du J, et al. Metallurgical & Materials Transactions A, 2004, 35(7), 2111.
17 I T H, Tzu H H, Yao J C, et al. Additive Manufacturing, 2020, 35, 101328.
18 Lim Y P, Wang C C. Materials Sciences and Applications, 2012, 10, 713.
19 Ma X, Li Y, Yang Y. Journal of Materials Research, 2009, 24(8), 2670.
20 Wang B, Yang Y S, Zhou J X, et al. Transactions of Nonferrous Metals Society of China, 2008, 18, 536.
21 Zhang L, Zhou W, Hu P H, et al. Journal of Alloys and Compounds, 2016, 688, 868.
22 Zhou Q, Yang Y S, Ma J C. Foundry, 2007, 56, 148.
23 Li L, Liang W, Ban C, et al. Materials Characterization, 2020, 163, 110274.
24 Haghayeghi R, Kapranos P. Materials Letters, 2015, 151, 38.
25 Fu J W, Yang Y S. Materials Letters, 2012, 67(1), 252.
26 Li Q, Song C, Li H, et al. Materials Science & Engineering A, 2007, 466(1-2), 101.
27 Zhang L. Metallurgical & Materials Transactions B, 2013, 44(2), 390.
28 Wu H, Zhou Q, Wang J, et al. Special Casting & Nonferrous Alloys, 2018, 38(6), 656 (in Chinese).
吴晗, 周全, 王俊, 等. 特种铸造及有色合金, 2018, 38(6), 656.
29 Hao J F, Wang S C, Nong D, et al. Foundry Technology, 2020, 41(2), 148 (in Chinese).
郝建飞, 王顺成, 农登, 等. 铸造技术, 2020, 41(2), 148.
30 Collini L, Pirondi A. International Journal of Fatigue, 2014, 62(5), 258.
31 Amit K, Aman K V, Mangey R. International Journal of Industrial Engineering Computations, 2015, 6(3), 419.
32 Roberts A P, Garboczi E J. Journal of the American Ceramic Society, 2000, 83(12), 3041.
33 Nadot Y, Mendez J, Ranganathan N. International Journal of Fatigue, 2004, 26(3), 311.
34 Yan H D, Gong W J, Jin H. Journal of Southwest Jiaotong University, 2020, 55(2), 343.
闫华东, 宫维佳, 靳慧. 西南交通大学学报,2020, 55(2), 343.
35 Gong W J. Effect of casting defects on mechanical properties of steel structure with cast steel nodes. Master’s Thesis, Southeast University, China, 2016 (in Chinese).
宫维佳. 铸造缺陷对含铸钢节点钢结构的力学性能影响. 硕士学位论文, 东南大学, 2016.
36 Liu M Y. Effect of grain refinement on the microstructure and properties of H68 brass alloy. Master’s Thesis, Dalian University of Technology, China, 2016 (in Chinese).
刘明洋. H68黄铜的晶粒细化及对组织和性能的影响. 大连理工大学, 硕士学位论文, 2016.
37 马晓平. 中国专利, CN102310174B, 2012.
38 Tu X R, Zhou Q, Chen L P. Hot Working Technology, 2010, 39(3), 63(in Chinese).
涂序荣, 周全, 陈乐平. 热加工工艺, 2010, 39(3), 63.
39 Chen G J, Zhang Y J, Yang Y S, et al. Metallic Functional Materials, 2014, 21(3), 19(in Chinese).
陈国军, 张永杰, 杨院生, 等. 金属功能材料, 2014, 21(3), 19.
40 Chen G J, Zhang Y J, Wang E G, et al. Metallic Functional Materials, 2014, 21(6), 29(in Chinese).
陈国军, 张永杰, 王恩刚, 等. 金属功能材料, 2014, 21(6), 29.
41 Li Q S, Li H B, Zhai Q J. Journal of Iron and Steel Research International, 2006, 13(5), 69.
42 Ma X P, Li Y, Yang Y. Journal of Materials Research, 2009, 24(10), 3174.
43 Gong Y Y, Luo J, Jing J X, et al. Materials Science & Engineering A, 2008, 497(1-2), 147.
44 Gao Y L, Li Q S, Gong Y Y, et al. Materials Letters, 2007, 61(18), 4011.
45 Guo L P, Yin J, Chen L P, et al. Special Casting & Nonferrous Alloys, 2013, 33(5), 480(in Chinese).
郭连平, 尹健, 陈乐平, 等. 特种铸造及有色合金, 2013, 33(5), 480.
46 Li Y J, Teng Y F, Yang Y S. Metals & Materials International, 2014, 20(3), 527.
47 Teng Y F, Feng X H, Li Y J, et al. Materials Research Innovations, 2014, 18(4), 352.
48 Hua J, Zhang Y, Wu C. Journal of Materials Processing Technology, 2011, 211(3), 463.
49 Zhao Z, Qi T, Hu P, et al. Advanced Manufacturing Processes, 2012, 27(5), 561.
50 Chen Q P, Oguma H, Shen H F. Materials Science Forum, 2019, 944, 52.
51 Bai Q, Ma Y, Xing S, et al. Journal of Materials Engineering and Performance, 2018, 27(2), 857.
52 Bai Q, Ma Y, Xing S, et al. Chinese Journal of Engineering, 2017, 39, 1828.
53 Fu J W, Yang Y S. Journal of Materials Research, 2011, 26(14), 1688.
54 Li Y J, Tao W Z, Yang Y S. Journal of Materials Processing Technology, 2012, 212(4), 903.
55 Lyu L H, Chen J C, Chen R, et al. Materials Reports, 2012, 26(7), 114(in Chinese).
吕连灏, 陈敬超, 陈蓉, 等. 材料导报, 2012, 26(7), 114.
56 Decker R F. JOM, 2006, 58(9), 32.
57 Loria E A. JOM, 1988, 40(7), 36.
58 Li Y J, Ma X P, Yang Y S. Transactions of Nonferrous Metals Society of China, 2011, 21(6), 1277.
59 Xie X H. Research on grain refinement of superalloy K4169 with pulsed magnetic field and mechanical vibration treatment. Master’s Thesis, Nanchang Hangkong University, China, 2014 (in Chinese).
谢小华. 脉冲磁场和机械振动作用下细化K4169高温合金晶粒的研究. 硕士学位论文, 南昌航空大学, 2014.
60 Teng Y F, Li Y J, Feng X H, et al. Acta Metallurgica Sinica, 2015, 51(7), 844 (in Chinese).
滕跃飞, 李应举, 冯小辉, 等. 金属学报, 2015, 51(7), 844.
61 Zhao J, Yu J H, Han K, et al. Acta Metallurgica Sinica, 2018, 31(12), 1334.
62 Zhao J, Cheng Y F, Han K, et al. Journal of Materials Processing Technology, 2016, 229, 286.
63 Cheng Y, Xu Z S, Zhou Z, et al. Shanghai Metals, 2016, 38(4), 54 (in Chinese).
程勇, 徐智帅, 周湛, 等. 上海金属, 2016, 38(4), 54.
64 Cao T Y, Zhai Q J, Li R X, et al. Research on Iron and Steel, 2014, 42(6), 35 (in Chinese).
曹同友, 翟启杰, 李仁兴, 等. 钢铁研究, 2014, 42(6), 35.
65 Yan C L, Wang F M, Zhang Q J. Metallic Functional Materials, 2015, 22(6), 24 (in Chinese).
严春亮, 王凤鸣, 张庆军. 金属功能材料, 2015, 22(6), 24.
66 Liu W. Study on microstructure and mechanical properties of AZ91D magnesium alloy by squeeze casting near the liquidus line. Master’s Thesis, Harbin University of Science and Technology, China, 2020 (in Chinese).
刘威. 近液相线挤压铸造AZ91D镁合金支架组织性能研究. 硕士学位论文, 哈尔滨理工大学, 2020.
67 Lin X X. Study on flame retardant atmosphere condition and control in differentialpressure casting of magnesium alloy. Master’s Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
林晓旭. 镁合金差压铸造过程阻燃气氛条件与气氛控制研究. 硕士学位论文, 哈尔滨工业大学, 2019.
68 Slooff F A, Dzwonczyk J S, Zhou J, et al. Materials Science & Enginee-ring A, 2010, 527(3), 735.
69 Huang J J. Effect of alloying and physical field on solidified structure and mechanical properties of AZ91 magnesium alloy. Master’s Thesis, Nanchang Hangkong University, China, 2016 (in Chinese).
黄金角. 合金化及物理场对AZ91镁合金凝固组织和力学性能的影响. 硕士学位论文, 南昌航空大学, 2016.
70 Hu S P, Chen L P, Zhou Q, et al. Special Casting & Nonferrous Alloys, 2018, 38(5), 556 (in Chinese).
胡世平, 陈乐平, 周全, 等. 特种铸造及有色合金, 2018, 38(5), 556.
71 Xin Y, Hu T, Chu P K. Acta Biomaterialia, 2011, 7(4), 1452.
72 Kirkland N T, Lespagnol J, Birbilis N, et al. Corrosion Science, 2010, 52(2), 287.
73 Hu P H. Effects of pulsed magnetic field on the microstructure, mechanical propertiesand corrosion behavior of biomedical magnesium and its alloys. Master’s Thesis, Nanchang Hangkong University, China, 2017 (in Chinese).
胡鹏鹤. 脉冲磁场对生物医用镁及镁合金凝固组织、力学性能及腐蚀行为的影响. 硕士学位论文, 南昌航空大学, 2017.
74 Liu L Q, Li Q S, Li R X, et al. China Foundry Machinery & Technology, 2004(1), 27 (in Chinese).
刘立强, 李秋书, 李仁兴, 等. 中国铸造装备与技术, 2004(1), 27.
75 Yan C L, Shen L, Bao X Y, et al. Light Alloy Fabrication Technology, 2020, 48(10), 17 (in Chinese).
闫春雷, 沈利, 鲍鑫宇, 等. 轻合金加工技术, 2020, 48(10), 17.
76 Zhao Z L, Zhang R, Liu L, et al. Chinese Journal of Materials Research, 2005(2), 97 (in Chinese).
赵志龙, 张蓉, 刘林, 等. 材料研究学报, 2005(2), 97.
77 Qiu H. Study on semi-solid structure of Al-Cu alloy and its composites prepared by lowvoltage pulsed magnetic field. Master’s Thesis, Nanchang Hangkong University, China, 2012 (in Chinese).
邱辉. 低压脉冲磁场制备Al-Cu合金及其复合材料的半固态组织研究. 硕士学位论文, 南昌航空大学, 2012.
78 Wang J. Preparation of Al-20Si functionally graded materials under pulsed magneticfield. Master’s Thesis, Nanchang Hangkong University, China, 2017 (in Chinese).
王俊. 脉冲磁场下Al-20Si功能梯度材料的制备. 硕士学位论文, 南昌航空大学, 2017.
79 Tan Z L, Zhou Q, Yuan Y P, et al. Special Casting & Nonferrous Alloys, 2019, 39(5), 544 (in Chinese).
谭震林, 周全, 袁源平, 等. 特种铸造及有色合金, 2019, 39(5), 544.
[1] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[2] 宋扬, 刘丽华, 张中武. 钛微合金化低碳钢的研究进展[J]. 材料导报, 2021, 35(15): 15175-15182.
[3] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[4] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[5] 刘飞, 尹健, 邵琦, 卢春辉. 脉冲磁场对高含量自生Mg2Si/Mg-Al基复合材料凝固组织的影响[J]. 材料导报, 2019, 33(2): 293-297.
[6] 李晓林, 肖宝亮, 崔阳, 李飞, 张大伟, 缪成亮, 张旭, 朱腾威. Nb、Ti微合金钢中碳氮化物固溶与再析出的研究[J]. 《材料导报》期刊社, 2017, 31(2): 105-111.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed