Research Status of Several Issues in the Design of Brake Discs for High-speed Trains
LIU Jue1,2, DONG Shiyun2,*, WANG Dongxing3, JIN Xin1, YAN Shixing2, LIU Xiaoting2, WANG Suocheng2, XU Binshi1,2
1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China 2 National Key Laboratory for Remanufacturing, Academy of Armored Forces, Beijing 100072, China 3 CRRC TANGSHAN Co., Ltd., Tangshan 063035, Hebei, China
Abstract: The brake disc is the core part of the braking system for high-speed trains. The friction between the brake disc and brake pads directly affects the braking performance to ensure safety, which converts the kinetic energy into heat energy to achieve emergency braking. With the train speeds up, the brake disc needs to absorb more energy and it causes the temperature to rise rapidly and even exceed the safety range of the material, so the higher performance brake disc needs to be developed. The brake disc design is a systematic problem, which involved the material, structure, forming method, heat treatment, etc. The factors are closely related and influence each other. It is important content to develop new materials, the ceramic composite and fibrous composite materials are the main development directions. However, they are still in the laboratory stage due to material defects and the immature preparation process. At present, cast steel and forged steel are widely used in the production of the brake disc. When using traditional technologies, the only consideration for the structure design is structural formability, which results in structural redundancy and limits the heat dissipation capacity. And the heat dissipation characteristics and stress distribution are also summarised and discussed. For the design and evaluation of the high-perfor-mance disc, the method of combining experiment and simulation is of significance, and the problem about the research method is also pointed out. About the forming method, the design freedom of the brake disc is expanded by advanced manufacturing technologies such as surface strengthening and additive manufacturing, which is conducive to improving the braking performance. In this paper, the research status is reviewed including material performance, structure design, and manufacturing technology about the brake disc. The research content and development direction about the brake disc design are also proposed, which provides ideas and theories for the precise design and lightweight design.
刘珏, 董世运, 王东星, 金鑫, 闫世兴, 刘晓亭, 王锁成, 徐滨士. 高速列车制动盘设计中若干问题的研究现状[J]. 材料导报, 2023, 37(14): 21090127-6.
LIU Jue, DONG Shiyun, WANG Dongxing, JIN Xin, YAN Shixing, LIU Xiaoting, WANG Suocheng, XU Binshi. Research Status of Several Issues in the Design of Brake Discs for High-speed Trains. Materials Reports, 2023, 37(14): 21090127-6.
1 Tang C J, Chen Y B, Zuo L L, et al. Materials Reports, 2018, 32(S1), 443 (in Chinese). 汤忖江, 陈蕴博, 左玲立, 等. 材料导报, 2018, 32(S1), 443. 2 Fu Q. Thermomechanical coupling analysis and structural optimization design of C/SiC brake disc. Master’s Thesis, Shangdong University, China, 2020 (in Chinese). 付强. 碳陶制动盘的热力耦合分析与结构优化设计. 硕士学位论文, 山东大学, 2020. 3 Zhao Z L. Deviation analysis of small scale braking model and 1∶1 braking model. Master’s Thesis, Dalian Jiaotong University, China, 2016 (in Chinese). 赵泽亮. 缩比制动模型与1∶1制动模型的偏差分析. 硕士学位论文, 大连交通大学, 2016. 4 Zheng Y G, Xiong X. Machinery Design & Manufacture, 2019(11), 107 (in Chinese). 郑尧刚, 熊新. 机械设计与制造, 2019(11), 107. 5 Zhang C, Ma L, Ding H H, et al. Journal of Mechanical Engineering, 2021, 57(8), 230 (in Chinese). 张超, 马蕾, 丁昊昊, 等. 机械工程学报, 2021, 57(8), 230. 6 Cheng H, Xue N J, Hou W Q, et al. Carbon, 2020(3), 29 (in Chinese). 程皓, 薛宁娟, 侯卫权, 等. 炭素, 2020(3), 29. 7 Li Y L, Sun L, Cao L X, et al. Materials Reports, 2020, 34(S1), 361 (in Chinses). 李亚林, 孙垒, 曹柳絮, 等. 材料导报, 2020, 34(S1), 361. 8 Sheng H, Wang Z H, Shao J, et al. Materials for Mechanical Enginee-ring, 2016, 40(1), 1 (in Chinese). 盛欢, 王泽华, 邵佳, 等. 机械工程材料, 2016, 40(1), 1. 9 Li J S, Li H P, Jiao B Q, et al. Applied Mechanics & Materials, 2013, 419, 370. 10 Ma X, Luan C H, Fan S W, et al. Tribology International, 2020, 154. 11 Ma X, Fan S W, Sun H D, et al. Tribology International, 2020, 142. 12 Chen F X, Yan J Y, Wang T J, et al. Internal Combustion Engine & Parts, 2021(7), 198 (in Chinese). 陈飞雄, 颜君毅, 王铁军, 等. 内燃机与配件, 2021(7), 198. 13 Qian K C, Liu Y, Que H B. Materials Science and Engineering of Powder Metallurgy, 2009, 14(4), 250 (in Chinese). 钱坤才, 刘颖, 阙红波. 粉末冶金材料科学与工程, 2009, 14(4), 250. 14 Jin W W, Du L Q, Qian K C, et al. Locomotive & Rolling Stock Techno-logy, 2017(4), 6 (in Chinese). 金文伟, 杜利清, 钱坤才, 等. 机车车辆工艺, 2017(4), 6. 15 Lu J N, Han J M, Li R H, et al. Journal of the China Railway Society, 2003(6), 108 (in Chinese). 芦金宁, 韩建民, 李荣华, 等. 铁道学报, 2003(6), 108. 16 Wang F, Li P S, Yu Q S. Heat Treatment of Metals, 2015, 40(12), 40 (in Chinese). 王飞, 李培署, 于钦顺. 金属热处理, 2015, 40(12), 40. 17 Dai Y K. Locomotive & Rolling Stock Technology, 1994(2), 1 (in Chinese). 戴雅康. 机车车辆工艺, 1994(2), 1. 18 Li L. Railway Locomotive & Car, 2017, 37(1), 113 (in Chinese). 李莉. 铁道机车车辆, 2017, 37(1), 113. 19 Zhang J Q, Zhou S X, Yang Y, et al. Engineering Mechanics, 2011, 28(8), 252 (in Chinese). 张俊清, 周素霞, 杨月, 等. 工程力学, 2011, 28(8), 252. 20 Chen S J, Wang D X, Qing J Y, et al. Railway Locomotive & Car, 2014, 34(4), 14 (in Chinese). 陈澍军, 王东星, 秦佳颖, 等. 铁道机车车辆, 2014, 34(4), 14. 21 Jin Y X, Jung M L, Suk B K. Rare Metal Materials and Engineering, 2008(11), 1956 (in Chinese). 金云学, Jung Moo Lee, Suk Bong Kang. 稀有金属材料与工程, 2008(11), 1956. 22 Li J S, Li H P, Jiao B Q, et al. Applied Mechanics and Materials, 2013, 419, 370. 23 Ma X, Fan S, Luan C, et al. Wear, 2021, 477, 203851. 24 Xia D M, Xi Y, Chen Z, et al. Journal of Machine Design, 2015, 32(2), 7 (in Chinese). 夏德茂, 奚鹰, 陈哲, 等. 机械设计, 2015, 32(2), 7. 25 Tan X L, Zuo X L, Zhang J, et al. Journal of Jiangsu University of Science and Technology ( Natural Science Edition), 2016, 30(3), 254 (in Chinese). 谭雪龙, 左新龙, 张建, 等. 江苏科技大学学报(自然科学版), 2016, 30(3), 254. 26 Mcphee A D, Johnson D A. International Journal of Thermal Sciences, 2008, 47(4), 458. 27 Pan L K, Han J M, Li Z Q, et al. Journal of Beijing Jiaotong University, 2015, 39(1), 118 (in Chinese). 潘利科, 韩建民, 李志强, 等. 北京交通大学学报, 2015, 39(1), 118. 28 Grivc U, Derzic D, Muhic S. Journal of Modern Transportation, 2019, 27(1), 5. 29 Liu J J, Liu Y, Kang G L, et al. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6), 4. 刘静娟, 刘莹, 康光林, 等. 机械科学与技术, 2018, 37(6), 4. 30 Gu D W. Cooling research and structure optimization of ventilated brake disk based on CFD. Master’s Thesis, Zhejiang University, China, 2018 (in Chinese). 顾大炜. 基于CFD的通风制动盘散热性能研究与结构优化. 硕士学位论文, 浙江大学, 2018. 31 Palmer E, Mishra R, Fieldhouse J. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2008, 222(7), 1231. 32 Jin X, Zhang Y H, Wang L B, et al. Chinese Science Bulletin, 2015, 60(23), 2245 (in Chinese). 金星, 张永恒, 王良璧, 等. 科学通报, 2015, 60(23), 2245. 33 Seghir O, Saury D, Harmand S, et al. International Journal of Thermal Sciences, 2006, 45(12), 1166. 34 Zhao X H. Design and analysis of new type brake disc for EMIU based on finite element method. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2019 (in Chinese). 赵兴晗. 基于有限元法的动车组新型制动盘设计与分析. 硕士学位论文, 北京建筑大学, 2019. 35 Wang H Y, Li Z J, Mo S X, et al. Welding & Joining, 2007(3), 14 (in Chinese). 王红英, 李志军, 莫守形, 等. 焊接, 2007(3), 14. 36 Niu Y C, Li F, Li X R, et al. Electric Drive for Locomotives, 2019(6), 5 (in Chinese). 牛悦丞, 李芾, 李新荣, 等. 机车电传动, 2019(6), 5. 37 Yang Q. Simulation and analysis of temperature field and stress field of train brake Disc. Master’s Thesis, Beijing Jiaotong University, China, 2009 (in Chinese). 杨强. 列车制动盘温度场和应力场仿真与分析. 硕士学位论文, 北京交通大学, 2009. 38 Belhocine, Afzal. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2020, 3(1), 53. 39 Xia D M, Xi Y, Zhou Y H. Chinese Journal of Construction Machinery, 2015, 13(5), 388 (in Chinese). 夏德茂, 奚鹰, 周亚红. 中国工程机械学报, 2015, 13(5), 388. 40 Zhang Q, Chang B H, Wang L, et al. China Railway Science, 2007(1), 81 (in Chinese). 张谦, 常保华, 王力, 等. 中国铁道科学, 2007(1), 81. 41 Panier, Dufrénoy, Weichert. Wear, 2007, 256(7-8), 764. 42 Asif A, Muhammad A M. Archives of Computational Methods in Enginee-ring, 2018, 1. 43 Li Z, Xiao P, Zhang B G, et al. International Journal of Applied Ceramic Technology, 2016, 13(3), 423. 44 Wang F, Ban Y F. Modern Cast Iron, 2020, 40(2), 19 (in Chinese). 王峰, 班云峰. 现代铸铁, 2020, 40(2), 19. 45 Wang D M. Study on forging technology and microstructure and properties of ventilated forged steel brake disc. Master’s Thesis, Beijing Jiaotong University, China, 2019 (in Chinese). 王德民. 通风式锻钢制动盘锻造工艺及组织性能研究. 硕士学位论文, 北京交通大学, 2019. 46 Peter F, Alena P, Gabriel F, et al. Engineering Failure Analysis, 2019, 95, 226. 47 Song G S, Han J M, Li W J, et al. Journal of Northern Jiaotong University, 2002(4), 71 (in Chinese). 宋光森, 韩建民, 李卫京, 等. 北方交通大学学报, 2002(4), 71. 48 Wolff E G. Materials Research Bulletin, 1995, 30(12), 1585. 49 Li Q C, Jia S Y. Foreign Technology, 1989(8), 29 (in Chinese). 李庆春, 贾淑云. 国外科技, 1989(8), 29. 50 Jean P, Bricout. ForeignLocomotive & Rolling Stock Technology, 2004 (1), 25 (in Chinese). Jean P, Bricout. 国外机车车辆工艺, 2004 (1), 25. 51 Jian Q. International Journal of Thermal Sciences, 2020, 155(2020), 106356.