Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 105-111    https://doi.org/10.11896/j.issn.1005-023X.2017.02.023
  材料研究 |
Nb、Ti微合金钢中碳氮化物固溶与再析出的研究
李晓林, 肖宝亮, 崔阳, 李飞, 张大伟, 缪成亮, 张旭, 朱腾威
首钢技术研究院, 北京 100043;
Solid Solution and Re-precipitation of Carbonitride in Nb,Ti-microalloyed Steel
LI Xiaolin, XIAO Baoliang, CUI Yang, LI Fei, ZHANG Dawei, MIAO Chengliang, ZHANG Xu, ZHU Tengwei
Shougang Research Institute of Technology, Beijing 100043;
下载:  全 文 ( PDF ) ( 1878KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用光学显微镜(OM)、透射电子显微镜(TEM)研究了再加热温度、奥氏体区变形温度和组织转变温度的变化对Nb、Ti微合金钢组织性能及其碳氮化物固溶与再析出行为的影响。结果表明:钢中加入铌,主要利用铌的碳氮化物在奥氏体形变过程中的再析出,抑制形变奥氏体的再结晶,在随后的组织演变过程中细化了组织;而钢中加入较高含量的钛,主要利用钛的碳化物在铁素体中的析出,产生明显的沉淀强化作用。这主要是铌、钛的碳氮化物固溶后,在奥氏体和铁素体中再析出的不同所造成的。钢中复合加入Nb-Ti后既起到细化晶粒的作用,又起到析出强化的作用。细晶强化既提高钢的强度又提高钢的韧性,但沉淀强化在大幅提高钢的强度的同时恶化了钢的韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓林
肖宝亮
崔阳
李飞
张大伟
缪成亮
张旭
朱腾威
关键词:  微合金钢  碳氮化物  细晶强化  沉淀强化  组织演变    
Abstract: The effect of reheating temperature, austenite deformation temperature and transformation temperature on mechanical property, solid solution and re-precipitation of Nb,Ti carbonitrides in Nb/Ti microalloyed steels were investigated by optical microscope (OM) and transmission electron microscope (TEM). Results showed that there had been a noticeable refinement in the microstructure in Nb microalloyed steel,as carbonitrides of niobium re-pricipitated during austenite deformation,inhibited austenite recrystalization, and acted as a grain refiner during subsequent microstructure revolution. The addition of Ti enhanced the strength of steel obviously, but had little effect on the microstructure refinement. Obvious grain refinement strengthening and precipitation strengthening can be confirmed in Nb-Ti microalloyed steel,both of which brought benefit to steel′s strength. Grain refinement strengthening improved the toughness of experimental steel, while on the contrary precipitation strengthening deteriorated the toughness.
Key words:  microalloyed steel    carbonitride    grain refinement strengthening    precipitation strengthening    microstructure evolution
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TG142.1  
作者简介:  李晓林:男,1985年生,博士,工程师,研究方向为热轧高强钢品种开发 E-mail:lixiaolinwork@163.com
引用本文:    
李晓林, 肖宝亮, 崔阳, 李飞, 张大伟, 缪成亮, 张旭, 朱腾威. Nb、Ti微合金钢中碳氮化物固溶与再析出的研究[J]. 《材料导报》期刊社, 2017, 31(2): 105-111.
LI Xiaolin, XIAO Baoliang, CUI Yang, LI Fei, ZHANG Dawei, MIAO Chengliang, ZHANG Xu, ZHU Tengwei. Solid Solution and Re-precipitation of Carbonitride in Nb,Ti-microalloyed Steel. Materials Reports, 2017, 31(2): 105-111.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.023  或          https://www.mater-rep.com/CN/Y2017/V31/I2/105
1 Manohar P A, Chandra T. Continuous cooling transformation behavior of microalloyed steels containing titanium, niobium, manganese and molybdenum[J].ISIJ Int,1996,36(12):1486.
2 Zhao Y T, Shang C J, Yang S W, et al. The metastable austenite transformation in Mo-Nb-Cu-B low carbon steel [J]. Mater Sci Eng A,2006,433:169.
3 Zhao Y T, Yang S W, Shang C J, et al. The mechanical properties and corrosion behaviors of ultra-low carbon microalloying steel [J]. Mater Sci Eng A,2007,454-455:695.
4 Speer J G, Michael J R, Hansen S S. Carbonitride precipitation in niobium/vanadium microallyed steels [J]. Metall Trans A,1987,18(2):211.
5 Smith R M, Dunne D P. Structureal aspects of alloy carbonitride precipitation in microalloyed steels[J]. Mater Forum,1988,11:166.
6 Yan F Y, Zhang X G. Application of Ti to automobile wheel steel and discussion on alloying technology[J]. Iron Steel,2001,36(5):47(in Chinese).
阎凤义,张晓光.钛在汽车轮钢中的作用及合金化工艺探讨[J].钢铁,2001,36(5):47.
7 Rainforth W M, et al. Precipitation of NbC in a model austenitic steel[J]. Acta Mater,2002,50(2):735.
8 Saikaly W, Bano X, Issartel C, et al. The effects of thermomechanical processing on the precipitation in a industrial dualphase steel microalloyed with titanium[J]. Metall Mater Trans A,2001,32(8):1939.
9 Misra R D K, Nathani H, Hartmann J E, et al. Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel[J]. Mater Sci Eng A,2005,394:339.
10 Soto R, Saikaly W, Bano X, et al.Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties[J]. Acta Mater,1999,47(12):3475.
11 Liu W J, Jonas J J. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures[J]. Me-tall Trans A,1983,19A(6):1403.
12 Pandita A, Murugaiyana A, Poddera A S, et al. Strain induced precipition of complex carbonitrides in Nb-V and Ti-V microalloyed steels[J]. Scr Mater,2005,53(1):1309.
13 Li W J, Kang X B. Effect of dissolution and precipitation of Nb-Ti carbides on structure and properties of low carbon microalloying steel[J]. Special Steel,2006,27(6):4(in Chinese).
李维娟,康小兵. Nb、Ti碳化物的溶解与析出对低C微合金钢组织和性能的影响[J]. 特殊钢,2006,27(6):4.
14 Zhao Y T, Shang C J, He X L, et al. Intermediate transformation structures in a carbon Mo-Cu-Nb-B microalloying steel[J]. Acta Metall Sin,2006,42(1):56(in Chinese).
赵运堂,尚成嘉,贺信莱,等.低碳Mo-Cu-Nb-B系微合金钢的中温转变组织类型[J].金属学报,2006,42(1):56.
15 Strid J, Easterling K E. On the chemistry and stability of complex carbide and nitrides in microalloyed steels[J]. Acta Metall,1985,33(11):2057.
16 Fu J, Zhu J, Di L, et al. Study on the precipitation behavior of TiN in the microalloyed steels[J]. Acta Metall Sin,2000,38(8):801(in Chinese).
傅杰,朱剑,迪林,等.微合金钢中TiN的析出规律研究[J]. 金属学报,2000,38(8):801.
17 Cota A B, Lacerda C A, et al. Effect of the austenitizing temperature on the kinetics of ferritic grain growth under continuous cooling of a Nb microalloyed steel[J]. Scr Mater,2004,51:721.
18 Liu W J, Jonas J J. Nucleation kinetics of Ti carbonitride in microalloyed austenite[J]. Metall Trans A,1989,20(4):689.
19 Craver A J, He K, Garvie L A J, et al. Complex heterogeneous precipitation in Ti-Nb microalloyed Al-killed HSLA steels-I,(Ti,Nb)(C,N) particles[J]. Acta Mater,2000,48(15):3857.
20 Sun Z Q, Yang W Y, Qi J J, et al. Deformation enhanced transformation and dynamic recrystallization of ferrite in a low carbon steel during multipass hot deformation[J]. Mater Sci Eng A,2002,334(9):201.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[3] 范航航, 刘飞, 郑亦玮, 白朴存, 崔晓明, 王海波, 靳亮. Li/Sc复合添加对铸态Al-Cu-Mg铝合金微观组织和硬度的影响规律[J]. 材料导报, 2024, 38(24): 23090211-7.
[4] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[5] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[6] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[7] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[8] 张志强, 楚昊然, 张天刚, 路学成, 张宇航, 郭志永. UNS S32750双相不锈钢焊接热影响区微观组织演变[J]. 材料导报, 2023, 37(21): 22050291-7.
[9] 张磊, 邢志国, 王海斗, 郭伟玲, 李国禄, 黄艳斐, 张执南. 脉冲磁场对合金凝固过程影响的研究进展[J]. 材料导报, 2023, 37(14): 21090053-11.
[10] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[11] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[12] 吴敏, 刘健, 罗霞, 刘允中, 蔡仁烨, 徐伟, 陈晓. Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制[J]. 材料导报, 2022, 36(24): 22030231-7.
[13] 白曦, 方伟, 常若斌, 于浩洋, 闫皎辉, 殷福星. 沉淀强化高熵合金研究进展[J]. 材料导报, 2022, 36(21): 20070199-7.
[14] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[15] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed