Abstract: Based on the empirical electron theory (EET) of solids and molecules, combined with the chemical composition of the microalloyed Q355B steel, the statistical values of electronic structure parameters of alloy were calculated. On the basis of the traditional alloy electronic structure model, the volume fraction of ferrite, the grain size and volume fraction of pearlite, and the lamellar spacing of pearlite were introduced to correct the model, and a new prediction model was proposed. Starting from grain refinement strengthening, solid solution strengthening, phase interface strengthening, precipitation strengthening and pearlite phase transformation strengthening, the mechanical properties mechanism model of microalloyed Q355B hot-rolled steel was established, and the tensile strength, yield strength, elongation and impact energy were calculated respectively. Comparing the calculated values of the traditional model and this model with the experimental values, the results show that the predicted relative errors of this model for tensile strength, yield strength, elongation and impact energy are 0.07%, 0.84%, 6.27%, and 3.40%, respectively. The absolute errors are 0.4 MPa, 3.9 MPa, 1.7% and 1.1 J, respectively. Compared with the traditional model, the prediction result of this model is very accurate, and the prediction of elongation and impact energy is greatly improved, indicating that the prediction result of this model is closer to the experimental value.
1 Li F, Lin C. Materials Reports, 2018, 34(13), 13190 (in Chinese). 李飞, 林成. 材料导报, 2018, 34(11), 13190. 2 Sun Y J, Li S N, Shang Y, et al. Materials Reports, 2012, 26(S1), 166 (in Chinese). 孙跃军, 李思南, 尚勇, 等. 材料导报, 2012, 26(S1), 166. 3 Wang X L, Peng Y. Materials Science and Technology, 2015, 23(4), 30 (in Chinese). 王兴隆, 彭艳. 材料科学与工艺, 2015, 23(4), 30. 4 Zeng L J, Huang F X, Zhou L, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35(10), 127 (in Chinese). 曾利娟, 黄福祥, 周露, 等. 重庆理工大学学报(自然科学), 2021, 35(10), 127. 5 Wang Y, Li C F, Lin Y H. Acta Metallurgica Sinica, 2017, 53(5), 622 (in Chinese). 王垚, 李春福, 林元华. 金属学报, 2017, 53(5), 622. 6 Zhang L, Li S C. Materials Reports, 2011, 25(4), 119 (in Chinese). 张磊, 李世春. 材料导报, 2011, 25(4), 119. 7 Zhang J, Wang X Q, Su T, et al. Acta Physica Sinica, 2021, 70(8), 206 (in Chinese). 张健, 王心桥, 苏彤, 等. 物理学报, 2021, 70(8), 206. 8 Song C Y, Hu L G, Wang S H, et al. Chinese Journal of Rare Metals, 2019, 43(5), 551 (in Chinese). 宋春燕, 胡利光, 王书桓, 等. 稀有金属, 2019, 43(5), 551. 9 Li F, Liao Y J, Wang X, et al. Materials Reports, 2018, 32(18), 3190 (in Chinese). 李飞, 廖怡君, 王旭, 等. 材料导报, 2018, 32(18), 3190. 10 Wei Y M, Lyu Z G, He L J, et al. Scientia Sinica (Technologica), 2017, 47(4), 411 (in Chinese). 魏亚蒙, 吕志刚, 何良菊, 等. 中国科学:技术科学, 2017, 47(4), 411. 11 Lin C, Huang S X, Yin G L, et al. Ordnance Material Science and Engineering, 2016, 39(1), 110 (in Chinese). 林成, 黄士星, 尹桂丽, 等. 兵器材料科学与工程, 2016, 39(1), 110. 12 Li F, Qian S L, Zhu Q F, et al. Chinese Journal of Rare Metals, 2015, 39(11), 1043 (in Chinese). 李飞, 钱守龙, 朱庆丰, 等. 稀有金属, 2015, 39(11), 1043. 13 Liu Z L, Lin C, Liu Y, et al. Progress in natural science, 2005, 15(3), 252. 14 Liu Z L, Lin C, Wang P, et al. Science in China Series E, 2006, 49(2), 137. 15 Liu Z L, Liu W D, Lin C, et al. Acta Metallurgica Sinica, 2004, 40(12), 1248 (in Chinese). 刘志林, 刘伟东, 林成, 等. 金属学报, 2004, 40(12), 1248. 16 Sun Y J, Zhang Q. Ordnance Material Science and Engineering, 2015, 38(6), 31 (in Chinese). 孙跃军, 张倩. 兵器材料科学与工程, 2015, 38(6), 31. 17 Wang Y, Li C F, Lin Y H, et al. Heat Treatment of Metals, 2016, 41(10), 6 (in Chinese). 王垚, 李春福, 林元华, 等. 金属热处理, 2016, 41(10), 6. 18 Wang Y W, Li C F, Liu Z L, et al. Heat Treatment of Metals, 2013, 38(10), 88 (in Chinese). 王义文, 李春福, 刘志良, 等. 金属热处理, 2013, 38(10), 88. 19 Liu Z L, Lin C. Statistical values of electronic structure parameters of alloys and calculation of mechanical properties of alloys, Metallurgical Industry Press, China, 2008 (in Chinese). 刘志林, 林成. 合金电子结构参数统计值及合金力学性能计算, 冶金工业出版社, 2008.