Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22090319-5    https://doi.org/10.11896/cldb.22090319
  金属与金属基复合材料 |
基于电子结构理论的微合金Q355B热轧钢力学性能预测
杨佳琛, 江海涛*, 田世伟, 陈飞达
北京科技大学工程技术研究院,北京 100083
Prediction of Mechanical Property of Microalloyed Q355B Hot-rolled Steel Based on Electronic Structure Theory
YANG Jiachen, JIANG Haitao*, TIAN Shiwei, CHEN Feida
Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 3866KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于固体与分子经验电子理论(EET),结合微合金Q355B钢的化学成分,计算合金电子结构参数特征值。在传统合金电子结构模型基础上,引入铁素体体积分数、珠光体的晶粒尺寸和体积分数、珠光体片层间距等进行模型修正,提出新的预测模型。从细晶强化、固溶强化、相界面强化、析出强化以及珠光体相变强化入手,建立了微合金Q355B热轧钢的力学性能预测模型,并分别计算了抗拉强度、屈服强度、延伸率和冲击功。将传统模型和本模型的计算值与试验值进行对比,结果表明,修正后的模型对抗拉强度、屈服强度、延伸率和冲击功的预测相对误差分别为0.07%、0.84%、6.27%和3.40%,绝对误差分别为0.4 MPa、3.9 MPa、1.7%和1.1 J。与传统模型相比,本模型对强度的预测结果十分精准,对延伸率和冲击功的预测精度有较大提升,表明本模型的预测结果更接近试验值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨佳琛
江海涛
田世伟
陈飞达
关键词:  微合金钢  电子结构理论  力学性能    
Abstract: Based on the empirical electron theory (EET) of solids and molecules, combined with the chemical composition of the microalloyed Q355B steel, the statistical values of electronic structure parameters of alloy were calculated. On the basis of the traditional alloy electronic structure model, the volume fraction of ferrite, the grain size and volume fraction of pearlite, and the lamellar spacing of pearlite were introduced to correct the model, and a new prediction model was proposed. Starting from grain refinement strengthening, solid solution strengthening, phase interface strengthening, precipitation strengthening and pearlite phase transformation strengthening, the mechanical properties mechanism model of microalloyed Q355B hot-rolled steel was established, and the tensile strength, yield strength, elongation and impact energy were calculated respectively. Comparing the calculated values of the traditional model and this model with the experimental values, the results show that the predicted relative errors of this model for tensile strength, yield strength, elongation and impact energy are 0.07%, 0.84%, 6.27%, and 3.40%, respectively. The absolute errors are 0.4 MPa, 3.9 MPa, 1.7% and 1.1 J, respectively. Compared with the traditional model, the prediction result of this model is very accurate, and the prediction of elongation and impact energy is greatly improved, indicating that the prediction result of this model is closer to the experimental value.
Key words:  microalloyed steel    electronic structure theory    mechanical property
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TG113.25  
基金资助: 国家重点研发计划(2016YFB0101600)
通讯作者:  江海涛,北京科技大学研究员、博士研究生导师。2004年博士毕业于西北工业大学,2004—2006年在北京科技大学材料学院从事博士后工作。2006年至今在北京科技大学工程技术研究院工作,主要从事钢铁、有色金属材料的品种开发及板带生产技术研究。在研国家自然科学基金、国家重点研发计划、北京市科技计划项目10余项,发表学术论文200余篇,获授权专利10余项。jianght@ustb.edu.cn   
作者简介:  杨佳琛,2020年7月于陕西理工大学获得工学学士学位。现为北京科技大学工程技术研究院硕士研究生,在江海涛研究员的指导下进行研究。目前主要研究领域为计算材料科学。
引用本文:    
杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
YANG Jiachen, JIANG Haitao, TIAN Shiwei, CHEN Feida. Prediction of Mechanical Property of Microalloyed Q355B Hot-rolled Steel Based on Electronic Structure Theory. Materials Reports, 2024, 38(7): 22090319-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090319  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22090319
1 Li F, Lin C. Materials Reports, 2018, 34(13), 13190 (in Chinese).
李飞, 林成. 材料导报, 2018, 34(11), 13190.
2 Sun Y J, Li S N, Shang Y, et al. Materials Reports, 2012, 26(S1), 166 (in Chinese).
孙跃军, 李思南, 尚勇, 等. 材料导报, 2012, 26(S1), 166.
3 Wang X L, Peng Y. Materials Science and Technology, 2015, 23(4), 30 (in Chinese).
王兴隆, 彭艳. 材料科学与工艺, 2015, 23(4), 30.
4 Zeng L J, Huang F X, Zhou L, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35(10), 127 (in Chinese).
曾利娟, 黄福祥, 周露, 等. 重庆理工大学学报(自然科学), 2021, 35(10), 127.
5 Wang Y, Li C F, Lin Y H. Acta Metallurgica Sinica, 2017, 53(5), 622 (in Chinese).
王垚, 李春福, 林元华. 金属学报, 2017, 53(5), 622.
6 Zhang L, Li S C. Materials Reports, 2011, 25(4), 119 (in Chinese).
张磊, 李世春. 材料导报, 2011, 25(4), 119.
7 Zhang J, Wang X Q, Su T, et al. Acta Physica Sinica, 2021, 70(8), 206 (in Chinese).
张健, 王心桥, 苏彤, 等. 物理学报, 2021, 70(8), 206.
8 Song C Y, Hu L G, Wang S H, et al. Chinese Journal of Rare Metals, 2019, 43(5), 551 (in Chinese).
宋春燕, 胡利光, 王书桓, 等. 稀有金属, 2019, 43(5), 551.
9 Li F, Liao Y J, Wang X, et al. Materials Reports, 2018, 32(18), 3190 (in Chinese).
李飞, 廖怡君, 王旭, 等. 材料导报, 2018, 32(18), 3190.
10 Wei Y M, Lyu Z G, He L J, et al. Scientia Sinica (Technologica), 2017, 47(4), 411 (in Chinese).
魏亚蒙, 吕志刚, 何良菊, 等. 中国科学:技术科学, 2017, 47(4), 411.
11 Lin C, Huang S X, Yin G L, et al. Ordnance Material Science and Engineering, 2016, 39(1), 110 (in Chinese).
林成, 黄士星, 尹桂丽, 等. 兵器材料科学与工程, 2016, 39(1), 110.
12 Li F, Qian S L, Zhu Q F, et al. Chinese Journal of Rare Metals, 2015, 39(11), 1043 (in Chinese).
李飞, 钱守龙, 朱庆丰, 等. 稀有金属, 2015, 39(11), 1043.
13 Liu Z L, Lin C, Liu Y, et al. Progress in natural science, 2005, 15(3), 252.
14 Liu Z L, Lin C, Wang P, et al. Science in China Series E, 2006, 49(2), 137.
15 Liu Z L, Liu W D, Lin C, et al. Acta Metallurgica Sinica, 2004, 40(12), 1248 (in Chinese).
刘志林, 刘伟东, 林成, 等. 金属学报, 2004, 40(12), 1248.
16 Sun Y J, Zhang Q. Ordnance Material Science and Engineering, 2015, 38(6), 31 (in Chinese).
孙跃军, 张倩. 兵器材料科学与工程, 2015, 38(6), 31.
17 Wang Y, Li C F, Lin Y H, et al. Heat Treatment of Metals, 2016, 41(10), 6 (in Chinese).
王垚, 李春福, 林元华, 等. 金属热处理, 2016, 41(10), 6.
18 Wang Y W, Li C F, Liu Z L, et al. Heat Treatment of Metals, 2013, 38(10), 88 (in Chinese).
王义文, 李春福, 刘志良, 等. 金属热处理, 2013, 38(10), 88.
19 Liu Z L, Lin C. Statistical values of electronic structure parameters of alloys and calculation of mechanical properties of alloys, Metallurgical Industry Press, China, 2008 (in Chinese).
刘志林, 林成. 合金电子结构参数统计值及合金力学性能计算, 冶金工业出版社, 2008.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed