Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 112-116    https://doi.org/10.11896/j.issn.1005-023X.2017.02.024
  材料研究 |
水热法合成MoO3单晶纳米带及其形成机理*
高宾, 张晓军
西安工程大学理学院, 西安 710048;
Hydrothermal Synthesis of Single Crystal α-MoO3 Nanobelts and Their Formation Mechanism
GAO Bin, ZHANG Xiaojun
School of Science, Xi’an Polytechnic University, Xi’an 710048;
下载:  全 文 ( PDF ) ( 1594KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以HCl和Na2MoO4·2H2O为原材料,不用任何模板剂的情况下,用简单的水热法成功地制备了正交相单晶α-MoO3纳米带。用X射线衍射仪、扫描电子显微镜、透射电子显微镜、紫外-可见光分光光度计对产物进行了表征。结果显示,α-MoO3纳米带是由低温条件下形成的亚稳相h-MoO3微米棒通过溶解-重结晶转变而来,其沿着c轴方向生长,加入表面活性剂CTAB可以提高α-MoO3纳米带的长径比。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高宾
张晓军
关键词:  三氧化钼  水热合成  纳米带  形成机理  长径比    
Abstract: Single crystal orthorhombic phase MoO3 (α-MoO3) nanobelts with uniform diameter were successfully prepared through a simple hydrothermal synthesis route at 180 ℃, using solution of sodium molybdate dihydrate as well as hydrochloric acid as raw materials and without template. The products were characterized by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. It can be concluded that the synthesized α-MoO3 nanobelts were transformed from the metastable phase h-MoO3 micro rods formed at low temperature (<90 ℃) by dissolution-recrystallization, and grew along the c-axis direction. Surfactant CTAB could increase aspect ratio of the prepared α-MoO3 nanobelts.
Key words:  molybdenum trioxide    hydrothermal synthesis    nanobelts    formation mechanism    aspect ratio
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TQ127  
基金资助: *国家自然科学基金(51172187);西安工程大学博士科研基金(BS1340);陕西省教育厅自然科学专项(15JK1293)
作者简介:  高宾:男,1974年生,博士,副教授,硕士研究生导师,主要从事发光材料的研究 E-mail:gaobin7401@sina.com
引用本文:    
高宾, 张晓军. 水热法合成MoO3单晶纳米带及其形成机理*[J]. 《材料导报》期刊社, 2017, 31(2): 112-116.
GAO Bin, ZHANG Xiaojun. Hydrothermal Synthesis of Single Crystal α-MoO3 Nanobelts and Their Formation Mechanism. Materials Reports, 2017, 31(2): 112-116.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.024  或          https://www.mater-rep.com/CN/Y2017/V31/I2/112
1 Wang X D, Summers C J , Wang Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays[J]. Nano Lett,2004,4(3):423.
2 Huang M H, Mao S, Feick H N, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science,2001,292(6):1897.
3 Mao S X, Zhao M H, Wang Z L. Nanoscale mechanical behavior of individual semiconducting nanobelts [J]. Appl Phys Lett,2003,83(5):993.
4 Tao T, Glushenkov A M, Zhang C F, et al. MoO3 nanoparticles dispersed uniformly in carbon matrix: A high capacity composite anode for Li-ion batteries [J]. J Mater Chem,2011,21(25):9350.
5 Li T M,Zeng W,Zhang Y Y, et al. nanobelt-assembled nest-like MoO3 hierarchical structure hydroth[J].Mater Lett,2015,160(7):476.
6 Wu H H, Yang R, Song B M. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water[J]. ACS Nano,2011,5(2):1276.
7 Sun Y X,Wang J,Zhao B T, et al. Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector [J]. J Mater Chem A,2013,1(15):4736 .
8 Komaba S, Kumagai N, Kumagai R,et al. Molybdenum oxides synthesized by hydrothermal treatment of A2MoO4 (A=Li, Na, K) and electrochemical lithium intercalation into the oxide [J]. Solid State Ionics,2002,152-153:319.
9 He T, Yao J. Photochromism of molybdenum oxide [J]. J Photochem Photobiol C: Photochem Rev,2003,4(2):125 .
10 Hsu C S, Chan C C, Huang H T, et al. Electrochromic properties of nanocrystalline MoO3 thin films [J]. Thin Solid Films,2008,516(15):4839.
11 Liu Y L, Chen K Q, Chen W. Electrochemical performance of new α-MoO3 nanobelt cathode materials for rechargeable Li-ion batteries[J]. Solid State Sci,2014,34(8):43.
12 Zhuo R F, Xu X Y, Feng H T. Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs [J]. Adv Mater Res,2010,97(6):960.
13 Jang S Y, Song Y M, Kim H S,et al. Three synthetic routes to single crystalline PbS nanowires with controlled growth direction and their electrical transport properties[J]. ACS Nano,2010,4(12):2391.
14 Hu Z B , Zhou C G , Zheng M R,et al. K-enriched MoO3 nanobundles: A layered structure with high electric conductivity[J]. J Phys Chem C,2012,116(6):3962.
15 Zheng L, Xu Y, Jin D,et al. Novel metastable hexagonal MoO3 nanobelts synthesis, photochromic, and electrochromic properties [J]. Chem Mater,2009,21(2):5681.
16 Lin S Y, Wang C M, Kao K S, et al. Electrochromic properties of MoO3 thin films derived by a sol-gel process [J]. J Sol-Gel Sci Technol,2010,53(1):51.
17 Cordier A, Resende V G, Weibel A, et al. Catalytic chemical vapor deposition synthesis of double-walled and few-walled carbon nanotubes by using a MoO3-supported conditioning catalyst to control the formation of iron catalytic particles within an ±-Al1.8Fe0.2O3 self-supported foam [J]. J Phys Chem C,2010,14(2):19188.
18 Li Y B, Bando Y. Quasi-aligned MoO3 nanotubes grown on Ta substrate [J]. Chem Phys Lett,2002,364(5):484.
19 Zhou J, Xu N S, Deng S Z, et al. Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field emission properties [J]. Adv Mater,2003,15(21):1835.
20 Niederberger M, Krumeich F, Muhr H J, et al. Synthesis and cha-racterization of novel nanoscopic molybdenum oxide fibers [J]. Mater Chem,2001,11(7):1941.
21 Li X L, Liu J F, Li Y D. Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts [J]. Appl Phys Lett,2002,81(25):4832.
22 Lou X W, Zeng H C. Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate [J]. Chem Mater,2002,14(11):4781.
23 Gao Y H, Bando Y, Sato T. Nanobelts of the dielectric material Ge3N4[J]. Appl Phys Lett,2001,79(27):4565.
24 Sun X M, Chen X, Deng Z X, et al. A CTAB-assisted hydrothermal orientation growth of MoO3 nanorods [J]. Chem Phys,2002,78(5):99.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[3] 石文天, 闫天明, 刘玉德, 李杰, 王林, 庞庆超. FRP制孔分层形成机理及抑制工艺方法研究[J]. 材料导报, 2023, 37(19): 22030127-7.
[4] 周靓, 何文远, 陈隆源, 朱红伟, 陈丽娟, 凌辉, 郑学军. Sn、P共掺杂MoS2纳米花的制备及电催化析氢性能研究[J]. 材料导报, 2023, 37(15): 22020118-7.
[5] 卫琳, 刘贵立, 杨疆飞, 李欣玥, 张国英. 零模超晶格类型对石墨烯纳米带金属性影响的密度泛函理论研究[J]. 材料导报, 2023, 37(13): 22010031-7.
[6] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[7] 徐长锋, 周友行, 肖加其, 李昱泽, 易倩. 长径比和应变率对海泡石的破碎能耗影响研究[J]. 材料导报, 2022, 36(Z1): 20120211-5.
[8] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[9] 王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
[10] 张堃, 袁新强, 王丹, 梅晶, 蒋鹏, 张伟. VO2(M)粉体合成与表征[J]. 材料导报, 2022, 36(13): 21010087-5.
[11] 张光富, 谭伟石, 张赛文, 文兵. 几何结构对电流驱动纳米带内磁斯格明子移动特性的影响[J]. 材料导报, 2022, 36(12): 21010203-5.
[12] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[13] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[14] 刘仁杰, 李三喜, 王松, 张爱玲. 蒙脱土剥离方法的研究进展[J]. 材料导报, 2020, 34(Z1): 249-254.
[15] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed