Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 22010031-7    https://doi.org/10.11896/cldb.22010031
  无机非金属及其复合材料 |
零模超晶格类型对石墨烯纳米带金属性影响的密度泛函理论研究
卫琳1, 刘贵立1,*, 杨疆飞1, 李欣玥1, 张国英2
1 沈阳工业大学建筑与土木工程学院,沈阳 110870
2 沈阳师范大学物理科学与技术学院,沈阳110034
Density Functional Theory Study on the Influence of Zero-mode Superlattice Types on the Metallicity of Graphene Nanoribbons
WEI Lin1, LIU Guili1,*, YANG Jiangfei1, LI Xinyue1, ZHANG Guoying2
1 College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China
2 College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
下载:  全 文 ( PDF ) ( 10316KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过在石墨烯纳米带(GNR)中引入一对跳跃参数相等的零模构建金属石墨烯纳米带模型,基于密度泛函理论计算了模型的电子特性。通过改变引入的零模类型(C-C、B-B、N-N、Al-Al和P-P)对其金属度进行调控。研究表明:一对N-N零模的引入可以极大地增加GNR的金属带宽,约为引入C-C型零模金属GNR金属带宽的两倍,为本征石墨烯金属带宽的10倍。零模类型影响GNR金属带宽的原因是,引入的零模类型使GNR中形成的五元环几何构型存在差异,影响其子晶格极化损失程度,从而调控其金属度。使用零模类型为N-N的GNR为基础模型,探究纳米带的宽度对GNR金属带宽的影响,结果表明:纳米带宽度的增加不利于金属带宽的拓展,带宽扩大到某一程度时,N-N零模键断裂,变为普通N掺杂型石墨烯。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卫琳
刘贵立
杨疆飞
李欣玥
张国英
关键词:  石墨烯纳米带  金属性  金属带宽  掺杂    
Abstract: In this work, a metal GNR (graphene nanoribbon) model is constructed by introducing a pair of zero modes with equal jumping parameters into the GNR. The electronic properties of the model are calculated based on density functional theory. The metallicity can be adjusted by changing the type of zero-mode(C-C, B-B, N-N, Al-Al and P-P) introduced. Studies have shown that the introduction of a pair of N-N zero-modes can greatly broaden the metal bandwidth of GNR, which is about twice that of the introduction of C-C type zero-mode metal GNRs and ten times the bandwidth of the intrinsic graphene metal. The reason why the zero-mode type affects the metal bandwidth of graphene nanoribbons is that the introduced zero-mode type makes the five-membered ring geometry formed in the GNR differ, which affects the degree of polarization loss of its sublattice, thereby regulating its metallicity. Using graphene nanoribbons with the zero-mode type of N-N as the basic model, the effect of the width of the nanoribbon on the GNR metal bandwidth is explored, the results show that the increase in the width of the nanoribbon is not conducive to the expansion of the metal bandwidth. When the bandwidth is expanded to a certain extent, the N-N zero-mode bond broken and becomes ordinary N-doped graphene.
Key words:  graphene nanoribbon    metallicity    metallic bandwidth    doping
发布日期:  2023-07-10
ZTFLH:  O469  
基金资助: 辽宁省教育厅计划项目(LZGD2019003)
通讯作者:  *刘贵立,沈阳工业大学建筑与土木工程学院教授、博士研究生导师。1985年大连铁道学院机车车辆系铁道车辆专业本科毕业,1987年吉林工业大学数学力学系计算力学专业硕士毕业,然后到沈阳工业大学工作至今,2004年沈阳工业大学材料加工专业博士毕业。目前主要从事智能混凝土及其智能组合结构等方面的研究工作。发表论文100余篇,其中SCI、EI收录60余篇。garylll@sina.com   
作者简介:  卫琳,2016年6月、2019年6月分别于太原科技大学和沈阳工业大学获得工学学士学位和硕士学位。现为沈阳工业大学建筑与土木工程学院博士研究生,在刘贵立教授的指导下进行研究。目前主要研究领域为建筑材料。
引用本文:    
卫琳, 刘贵立, 杨疆飞, 李欣玥, 张国英. 零模超晶格类型对石墨烯纳米带金属性影响的密度泛函理论研究[J]. 材料导报, 2023, 37(13): 22010031-7.
WEI Lin, LIU Guili, YANG Jiangfei, LI Xinyue, ZHANG Guoying. Density Functional Theory Study on the Influence of Zero-mode Superlattice Types on the Metallicity of Graphene Nanoribbons. Materials Reports, 2023, 37(13): 22010031-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010031  或          http://www.mater-rep.com/CN/Y2023/V37/I13/22010031
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
2 Jinming C, Pascal R, Rached J, et al. Nature, 2018, 466(7305), 470.
3 Voit J. Reports on Progress in Physics, 1995, 58(9), 977.
4 Bockrath M, Cobden D H, Jia L, et al. Nature, 1999, 397(6720), 598.
5 Chandni U, Kundu P, Kundu S, et al. Advanced Materials, 2013, 25(17), 2486.
6 Wang S, Zhao S, Shi Z, et al. Nature Materials, 2020, 19(9), 986.
7 Goñi A R, Pinczuk A, Weiner J S, et al. Physical Review Letters, 1991, 67(23), 3298.
8 Lin M F, Shung W K. Physical Review B:Condensed Matter and Materials Physics, 1994, 50(23), 17744.
9 Kataura H, Kumazawa Y, Maniwa Y, et al. Synthetic Metals, 1999, 103(1-3), 2555.
10 Jauffred L, Samadi A, Klingberg H, et al. Chemical Reviews, 2019, 119(13), 8087.
11 Ha M, Kim J, You M, et al. Chemical Reviews, 2019, 119(24), 12208.
12 Lee C, Lawrie B, Pooser R, et al. Chemical Reviews, 2021, 121(8), 4743 .
13 Monçeau P, Ong P N, Portis A M, et al. Physical Review Letters , 1976, 37(10), 602.
14 Grüner G, Zawadowski A, Chaikin P M. Physical Review Letters, 2015, 46(7), 511.
15 Xi X, Zhao L, Wang Z, et al. Nature Nanotechnology, 2015, 10(9), 765.
16 Lei S, Teicher S M L, Topp A, et al. Advanced Materials, 2021, 33(30), 2101591.
17 Tang Z K, Zhang L Y, Wang N. Science, 2001, 292(5526), 2462.
18 Takesue I, Haruyama J, Kobayashi N, et al. Physical Review Letters, 2006, 96(5), 057001.
19 Cao Y, Fa Temi V, Fa Ng S, et al. Nature, 2018, 556(7699), 43.
20 Hao Z Y, Zimmerman A M, Ledwith P, et al. Science, 2021, 371(6534), 1133.
21 Zunger A, Malyi O I. Chemical Reviews, 2021, 121(5), 3031.
22 Rizzo D J, Veber G, Jiang J, et al. Science, 2020, 369(6511), 1597.
23 Lieb E H. Physical Review Letters, 1989, 62(16), 1201.
24 Su W P, Schrieffer J R. Physical Review B, 1980, 22(4), 2099.
25 Segall M, Lindan P, Probert M J, et al. Journal of Physics Condensed Matter, 2002, 14(11), 2717.
26 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1998, 77(18), 3865.
27 Hou X H, Deng Z C, Zhang K. Physica E Low-dimensional Systems and Nanostructures, 2017, 88, 252.
28 Wang J X, Wang Y, Liu G L, et al. Physica B:Condensed Matter, 2020, 578, 411755.
29 Ferrari A C, Meyer J C, Scardaci V, et al. Physical Review Letters, 2006, 97(18), 187401.
30 Chen X, Cheng M J, Wu S Q, et al. Acta Physica Sinica, 2017, 66(10), 289 (in Chinese).
陈献, 程梅娟, 吴顺情, 等. 物理学报, 2017, 66(10), 289.
31 Zhang G Y, Jiao X Q, Liu Y S, et al. Acta Physica Sinica, 2020, 69(23), 237101 (in Chinese).
张国英, 焦兴强, 刘业舒, 等. 物理学报, 2020, 69(23), 237101.
[1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[2] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[3] 田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
[4] 陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
[5] 杜泽, 赵尉伶, 匡代洪, 侯亮, 严超, 杨方源. BiFe1-xMnxO3纳米粉末的制备及光催化性能[J]. 材料导报, 2023, 37(13): 21100037-8.
[6] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[7] 陈园虹, 陈婷, 谢志翔, 徐彦乔, 胡泽浩, 林坚. 掺杂型Ⅰ-Ⅲ-Ⅵ族多元量子点的制备及应用研究进展[J]. 材料导报, 2023, 37(10): 21090296-10.
[8] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[9] 赵玉辉, 张雅荣, 吴勇民, 朱蕾, 郭俊, 汤卫平. NASICON结构Na3Zr2Si2PO12固体电解质研究进展[J]. 材料导报, 2022, 36(Z1): 21050235-9.
[10] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[11] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[12] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[13] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[14] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[15] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed