Density Functional Theory Study on the Influence of Zero-mode Superlattice Types on the Metallicity of Graphene Nanoribbons
WEI Lin1, LIU Guili1,*, YANG Jiangfei1, LI Xinyue1, ZHANG Guoying2
1 College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China 2 College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
Abstract: In this work, a metal GNR (graphene nanoribbon) model is constructed by introducing a pair of zero modes with equal jumping parameters into the GNR. The electronic properties of the model are calculated based on density functional theory. The metallicity can be adjusted by changing the type of zero-mode(C-C, B-B, N-N, Al-Al and P-P) introduced. Studies have shown that the introduction of a pair of N-N zero-modes can greatly broaden the metal bandwidth of GNR, which is about twice that of the introduction of C-C type zero-mode metal GNRs and ten times the bandwidth of the intrinsic graphene metal. The reason why the zero-mode type affects the metal bandwidth of graphene nanoribbons is that the introduced zero-mode type makes the five-membered ring geometry formed in the GNR differ, which affects the degree of polarization loss of its sublattice, thereby regulating its metallicity. Using graphene nanoribbons with the zero-mode type of N-N as the basic model, the effect of the width of the nanoribbon on the GNR metal bandwidth is explored, the results show that the increase in the width of the nanoribbon is not conducive to the expansion of the metal bandwidth. When the bandwidth is expanded to a certain extent, the N-N zero-mode bond broken and becomes ordinary N-doped graphene.
卫琳, 刘贵立, 杨疆飞, 李欣玥, 张国英. 零模超晶格类型对石墨烯纳米带金属性影响的密度泛函理论研究[J]. 材料导报, 2023, 37(13): 22010031-7.
WEI Lin, LIU Guili, YANG Jiangfei, LI Xinyue, ZHANG Guoying. Density Functional Theory Study on the Influence of Zero-mode Superlattice Types on the Metallicity of Graphene Nanoribbons. Materials Reports, 2023, 37(13): 22010031-7.
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666. 2 Jinming C, Pascal R, Rached J, et al. Nature, 2018, 466(7305), 470. 3 Voit J. Reports on Progress in Physics, 1995, 58(9), 977. 4 Bockrath M, Cobden D H, Jia L, et al. Nature, 1999, 397(6720), 598. 5 Chandni U, Kundu P, Kundu S, et al. Advanced Materials, 2013, 25(17), 2486. 6 Wang S, Zhao S, Shi Z, et al. Nature Materials, 2020, 19(9), 986. 7 Goñi A R, Pinczuk A, Weiner J S, et al. Physical Review Letters, 1991, 67(23), 3298. 8 Lin M F, Shung W K. Physical Review B:Condensed Matter and Materials Physics, 1994, 50(23), 17744. 9 Kataura H, Kumazawa Y, Maniwa Y, et al. Synthetic Metals, 1999, 103(1-3), 2555. 10 Jauffred L, Samadi A, Klingberg H, et al. Chemical Reviews, 2019, 119(13), 8087. 11 Ha M, Kim J, You M, et al. Chemical Reviews, 2019, 119(24), 12208. 12 Lee C, Lawrie B, Pooser R, et al. Chemical Reviews, 2021, 121(8), 4743 . 13 Monçeau P, Ong P N, Portis A M, et al. Physical Review Letters , 1976, 37(10), 602. 14 Grüner G, Zawadowski A, Chaikin P M. Physical Review Letters, 2015, 46(7), 511. 15 Xi X, Zhao L, Wang Z, et al. Nature Nanotechnology, 2015, 10(9), 765. 16 Lei S, Teicher S M L, Topp A, et al. Advanced Materials, 2021, 33(30), 2101591. 17 Tang Z K, Zhang L Y, Wang N. Science, 2001, 292(5526), 2462. 18 Takesue I, Haruyama J, Kobayashi N, et al. Physical Review Letters, 2006, 96(5), 057001. 19 Cao Y, Fa Temi V, Fa Ng S, et al. Nature, 2018, 556(7699), 43. 20 Hao Z Y, Zimmerman A M, Ledwith P, et al. Science, 2021, 371(6534), 1133. 21 Zunger A, Malyi O I. Chemical Reviews, 2021, 121(5), 3031. 22 Rizzo D J, Veber G, Jiang J, et al. Science, 2020, 369(6511), 1597. 23 Lieb E H. Physical Review Letters, 1989, 62(16), 1201. 24 Su W P, Schrieffer J R. Physical Review B, 1980, 22(4), 2099. 25 Segall M, Lindan P, Probert M J, et al. Journal of Physics Condensed Matter, 2002, 14(11), 2717. 26 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1998, 77(18), 3865. 27 Hou X H, Deng Z C, Zhang K. Physica E Low-dimensional Systems and Nanostructures, 2017, 88, 252. 28 Wang J X, Wang Y, Liu G L, et al. Physica B:Condensed Matter, 2020, 578, 411755. 29 Ferrari A C, Meyer J C, Scardaci V, et al. Physical Review Letters, 2006, 97(18), 187401. 30 Chen X, Cheng M J, Wu S Q, et al. Acta Physica Sinica, 2017, 66(10), 289 (in Chinese). 陈献, 程梅娟, 吴顺情, 等. 物理学报, 2017, 66(10), 289. 31 Zhang G Y, Jiao X Q, Liu Y S, et al. Acta Physica Sinica, 2020, 69(23), 237101 (in Chinese). 张国英, 焦兴强, 刘业舒, 等. 物理学报, 2020, 69(23), 237101.