Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21090296-10    https://doi.org/10.11896/cldb.21090296
  无机非金属及其复合材料 |
掺杂型Ⅰ-Ⅲ-Ⅵ族多元量子点的制备及应用研究进展
陈园虹1, 陈婷1,*, 谢志翔2, 徐彦乔3, 胡泽浩3, 林坚1
1 苏州科技大学材料与器件研究院,江苏 苏州 215009
2 苏州科技大学化学与生命科学学院,江苏 苏州 215009
3 景德镇陶瓷大学材料科学与工程学院,江西 景德镇 333001
Synthesis and Application of DopedⅠ-Ⅲ-Ⅵ Multiple Quantum Dots
CHEN Yuanhong1, CHEN Ting1,*, XIE Zhixiang2, XU Yanqiao3, HU Zehao3, LIN Jian1
1 Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Chemical and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
3 School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi, China
下载:  全 文 ( PDF ) ( 20016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ⅰ-Ⅲ-Ⅵ族多元量子点具有粒径尺寸小、半峰宽较宽、Stokes位移大、抗光漂白能力强、绿色环保等优异的物理化学性质,通过改变其化学成分可以实现发射范围在可见光到近红外光区域连续调谐,同时避免了Cd、Hg、Pb等重金属元素和Se、Te、P、As等剧毒阴离子的使用。上述优点使其成为替代传统二元量子点的理想材料,因此在太阳能电池、发光二极管、光探测器、生物成像等领域具有广阔的应用前景。   与二元量子点相比,多元量子点由于含有多种不同类型的金属离子,存在金属离子反应速率不同的问题,使得晶体内部缺陷较多,因此荧光性能仍有待提高。掺杂过渡金属离子(例如Zn2+、Mn2+或Cu+)可有效调控多元量子点的带隙宽度,不仅可增大量子点的Stokes位移,还能促进辐射复合,从而有效拓宽发光范围,提高量子产率。   本文详细阐述了掺杂型Ⅰ-Ⅲ-Ⅵ族多元量子点的发光机理,分别介绍了有机相和水相合成法制备该类型量子点的特点,通过有机相合成的多元量子点具有结晶性好、荧光量子产率高的优点,而水相合成的多元量子点具有安全环保、生物相容性好等明显优势。同时,本文综述了过渡金属离子掺杂和共掺杂对多元量子点带隙宽度、可见光吸收范围和荧光强度的影响,最后总结了该类量子点在光电、生物医药和荧光传感器等领域的应用进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈园虹
陈婷
谢志翔
徐彦乔
胡泽浩
林坚
关键词:  Ⅰ-Ⅲ-Ⅵ族量子点  掺杂  荧光  量子产率    
Abstract: The Ⅰ-Ⅲ-Ⅵ multiple quantum dots (QDs) have excellent physicochemical properties such as small particle size, broad half-peak width, large Stokes shift, anti-photobleaching stability, environment friendliness, and their emission range can be continuously tuned in the visible to near-infrared light region by changing the chemical composition. Moreover, they can avoid the use of heavy metal elements such as Cd, Hg and Pb and highly toxic anions, i.e.Se, Te, P and As. These advantages make them promising candidates to replace traditional binary QDs in the fields of solar cells, light-emitting diodes, photodetectors, bioimaging, etc. Compared with the binary QDs, the multiple QDs contain many different types of metal ions and have the problem of different reaction rates between metal ions, causing more defects inside the crystal. Therefore, its fluorescence performance still needs to be improved. The doping of transition metal ions (e.g.Zn2+, Mn2+ or Cu+) can effectively modulate the band gap width of multiple QDs, which can not only increase the Stokes shift of QDs, but also promote the radiation recombination, thus effectively broadening the luminescence range and increasing the quantum yield. This paper elaborates the luminescence mechanism of doped Ⅰ-Ⅲ-Ⅵ multiple QDs, and introduces the characteristics of organic phase and aqueous phase preparation of this type of QDs, respectively. Multiple QDs synthesized by organic phase have the advantages of good crystallinity and high fluorescence quantum yield, while those synthesized by aqueous phase also have obvious advantages such as safety, environmental friendliness and good biocompatibility. Meanwhile, the paper reviews the effects of transition metal ion doping and co-doping on the band gap width, visible light absorption range and fluorescence intensity of multiples QDs. Finally, the progress of doped multiple QDs in the fields of optoelectronic, biomedical applications and fluorescences is also summarized.
Key words:  Ⅰ-Ⅲ-Ⅵ type quantum dots    doping    fluorescence    quantum yield
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  O482.31  
基金资助: 国家自然科学基金(52062019;22001187);江苏省高校青蓝工程资助
通讯作者:  *陈婷,苏州科技大学副教授、硕士研究生导师。2005年云南大学材料物理专业本科毕业,2008年云南大学材料学专业硕士毕业,2012年北京科技大学材料学专业博士毕业。2020年到苏州科技大学工作至今。目前主要从事荧光量子点、陶瓷色料、透氧膜、气敏传感器和燃料电池等方面的研究工作。作为主要完成人参与国家级、省级项目11项,市厅级项目7项。近年来以第一作者/通信作者身份发表SCI收录论文70篇,获批国家发明专利16项。chenting@mail.usts.edu.cn   
作者简介:  陈园虹,2020年6月毕业于中国药科大学,获得理学学士学位。现为苏州科技大学化学与生命科学学院硕士研究生,在李长明教授和陈婷副教授的指导下进行研究。目前主要研究领域为多元量子点。
引用本文:    
陈园虹, 陈婷, 谢志翔, 徐彦乔, 胡泽浩, 林坚. 掺杂型Ⅰ-Ⅲ-Ⅵ族多元量子点的制备及应用研究进展[J]. 材料导报, 2023, 37(10): 21090296-10.
CHEN Yuanhong, CHEN Ting, XIE Zhixiang, XU Yanqiao, HU Zehao, LIN Jian. Synthesis and Application of DopedⅠ-Ⅲ-Ⅵ Multiple Quantum Dots. Materials Reports, 2023, 37(10): 21090296-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090296  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21090296
1 Veeramani V, Bao Z, Chan M H, et al. Journal of Solid State Chemistry, 2018, 270, 71.
2 Panfil Y E, Oded M, Banin U. Angewandte Chemie International Edition, 2017, 57(16), 4274.
3 Movlarooy T. Materials Research Express, 2018, 5(3), 035032.
4 Bai Z, Ji W, Han D, et al. Chemistry of Materials, 2016, 28(4), 1085.
5 Wu R, Wang T, Wu M, et al. Chemical Engineering Journal, 2018, 348, 447.
6 Luo S, Ke J, Zhang Q, et al. Applied Catalysis B Environmental, 2018, 221, 215.
7 Rossetti R, Nakahara S, Brus L E. Journal of Chemical Physics, 1983, 79(2), 1086.
8 Murray C B, Norris D J, Bawendi M G. Journal of Luminescence, 1993, 115(19), 8706.
9 Colvin V L, Schlamp M C, Alivisatos A P. Nature, 1994, 370(6488), 354.
10 Bhargava R N, Gallagher D, Hong X, et al. Physical Review Letters, 1994, 72(3), 416.
11 Bruchez M, Moronne M, Gin P, et al. Science, 1998, 281(5385), 2013.
12 Chan W, Nie S. Science, 1998, 281(5385), 2016.
13 Peng Z A, Peng X G. Journal of the American Chemical Society, 2001, 123(7), 1389.
14 Peng Z A, Peng X G. Journal of the American Chemical Society, 2001, 123(1), 183.
15 Derfus A M, Chan W C, Bhatia S N. Nano Letters, 2004, 4(1), 11.
16 Castro S L, Bailey S G, Raffaelle R P, et al. Chemistry of Materials, 2003, 15(16), 3142.
17 Dai M, Ogawa S, Kameyama T, et al. Journal of Materials Chemistry, 2012, 22(25), 12851.
18 Aldakov D, Aurélie L, Reiss P, et al. Journal of Materials Chemistry C, 2013, 1(24), 3756.
19 Pan D C, An L J, Sun Z G, et al. Journal of the American Chemical Society, 2008, 130(17), 5620.
20 Nose K, Soma Y, Omata T, et al. Chemistry of Materials, 2009, 21(13), 2607.
21 Batabyal S K, Tian L, Venkatram N, et al. Journal of Physical Chemistry C, 2009, 113(33), 15037.
22 Xiang W D, Yang H L, Liang X J, et al. Journal of Materials Chemistry C, 2013, 1(10), 2014.
23 Brus L E. In:Quantum size effects in the electronic properties of small semiconductor crystallites, Pullman B, Jortner J, Nitzan A, Gerber B, ed. , Dynamics on Surfaces, USA, 1984, pp. 431.
24 Chen T, Ren Y L, Xu Y Q, et al. Journal of Alloys and Compounds, 2020, 858(18), 158084.
25 Kolny-Olesiak J, Weller H. ACS Applied Materials & Interfaces, 2013, 5(23), 12221.
26 Stam W, Berends A C, Cdm Donegá. ChemPhysChem, 2016, 17(5), 550.
27 Li W J, Pan Z X, Zhong X H. Journal of Materials Chemistry A, 2015, 3(4), 1649.
28 Kuzuya O T. Journal of Luminescence, 2013, 133, 121.
29 Peng X G. Chemistry, 2002, 8(2), 334.
30 Chen S Q, Ahmadiantehrani M, Zhao J L, et al. Journal of Alloys and Compounds, 2016, 665, 137.
31 Nakamura H, Kato W, Uehara M, et al. Chemistry of Materials, 2006, 18(14), 3330.
32 Torimoto T, Adachi T, Okazaki K I, et al. Journal of the American Chemical Society, 2007, 129(41), 12388.
33 Feng J, Sun M, Yang F, et al. Chemical Communications, 2011, 47(22), 6422.
34 Zhang W, Zhong X. Inorganic Chemistry, 2011, 50(9), 4065.
35 Tang X, Ho W, Xue J M. Journal of Physical Chemistry C, 2012, 116(17), 9769.
36 Fahmi M Z, Chang J Y. Procedia Chemistry, 2016, 18, 112.
37 Mazing D S, Korepanov O A, Aleksandrova O A, et al. Optics and Spectroscopy, 2018, 125(5), 773.
38 Yang Y, Mao B, Gong G, et al. International Journal of Hydrogen Energy, 2019, 44(30), 15882.
39 Regulacio M D, Win K Y, Lo S L, et al. Nanoscale, 2013, 5(6), 2322.
40 Yang W T, Guo W S, Zhang T B, et al. Journal of Materials Chemistry B, 2015, 3(43), 8518.
41 Liu Y, Chen X Q, Ma Q. New Journal of Chemistry, 2018, 46(2), 4102.
42 Deng D W, Qu L G, Cheng Z Q, et al. Journal of Luminescence, 2014, 146(1), 364.
43 Liu Y F, Tang X S, Deng M, et al. Journal of Luminescence, 2018, 202, 71.
44 Deng D W, Cao J, Qu L Z, et al. Physical Chemistry Chemical Physics, 2013, 15(14), 5078.
45 Chen S, Demillo V, Lu M, et al. RSC Advances, 2016, 6(56), 51161.
46 Xu Y Q, Chen T, Hu X B, et al. Journal of Colloid and Interface Science, 2017, 496, 479.
47 Zhang B T, Yang C B, Gao Y, et al. Nanotheranostics, 2017, 1(1), 131.
48 Jiang T T, Song J L Q, Wang H J, et al. Journal of Materials Chemistry B, 2015, 3(11), 2402.
49 Cao S, Ji W Y, Zhao J L, et al. Journal of Materials Chemistry C, 2016, 4(3), 581.
50 Liu Z P, Liu S S. Analytical & Bioanalytical Chemistry, 2018, 410(17), 4145.
51 Sousa V, Gonçalves B F, Franco M, et al. Chemistry of Materials, 2019, 31(1), 260.
52 Ghanbari K, Roushani M, Soheyli E, et al. Materials Science and Engineering:C, 2019, 102, 653.
53 Norris D J, Yao N, Charnock F T, et al. Nano Letters, 2001, 1(1), 3.
54 Hanif K M, Meulenberg R W, Strouse G F. Journal of the American Chemical Society, 2002, 124(38), 11495.
55 Mikulec F V, Kuno M, Bennati M, et al. MRS Online Proceeding Library Archive, 2000, 582(11), 2532.
56 Erwin S C, Zu L, Haftel M I, et al. Nature, 2005, 436(7047), 91.
57 Mao B, Chuang C H, Wang J, et al. Journal of Luminescence, 2011, 115(18), 8945.
58 Luo Z S, Zhang H, Huang J, et al. Journal of Colloid and Interface Science, 2012, 377(1), 27.
59 Komarala V K, Xie C, Wang Y Q, et al. Journal of Applied Physics, 2012, 111(12), 124314.
60 Zhu J T, Mei S L, Yang W, et al. Journal of Colloid and Interface Science, 2017, 506, 27.
61 Li C, Wu P. Luminescence, 2019, 324, 782.
62 Chang C C, Chen J K, Chen C P, et al. ACS Applied Materials & Interfaces, 2013, 5(21), 11296.
63 Sun M M, Chen Z Y, Li J R, et al. Electrochimica Acta, 2018, 269, 429.
64 Hamanaka Y, Ozawa K, Kuzuya T. Journal of Physical Chemistry Letters, 2014, 118(26), 14562.
65 Zhang J, Xie R G, Yang W S. Chemistry of Materials, 2011, 23(14), 3357.
66 Chi T, Thuy U, Huyen T, et al. Journal of Electronic Materials, 2016, 45(5), 2449.
67 Rogach A L, Franzl T, Klar T A, et al. Journal of Physical Chemistry C, 2007, 111(40), 14628.
68 Wang Y, Tang Z Y, Correa-Duarte M A, et al. Journal of Physical Chemistry B, 2004, 108(40), 15461.
69 Xiang W D, Xie C P, Wang J, et al. Journal of Alloys and Compounds, 2014, 588, 114.
70 Chen T, Xu Y Q, Wang L J, et al. Chemistry-A European Journal, 2018, 24(61), 16407.
71 Tang X S, Yu K, Xu Q H, et al. Journal of Materials Chemistry, 2011, 21, 11239.
72 Tang X S, Ho W B A, Xue J M. Journal of Physical Chemistry C, 2012, 116(17), 9769.
73 Wang X, Xie C P, Zhong J S, et al. Journal of Alloys and Compounds, 2015, 648, 127.
74 Kong W G, Zhang B P, Li R F, et al. Applied Surface Science, 2015, 327, 394.
75 Schimpf A M, Knowles K E, Carroll G M, et al. Accounts of Chemical Research, 2015, 48(7), 1929.
76 Vlaskin V A, Janssen N, Van R J, et al. Nano Letters, 2010, 10(9), 3670.
77 Alivisatos A P. Science, 1996, 271(5251), 933.
78 Pradhan N, Adhikari S D, Nag A, et al. Angewandte Chemie International Edition, 2017, 56(25), 7038.
79 Yang Y A, Chen O, Angerhofer A, et al. Journal of the American Chemical Society, 2017, 128(38), 12428.
80 Cao S, Li C M, Wang L, et al. Scientific Reports, 2014, 4, 7510.
81 Silva A S, Loureno S A, Dantas N O. Physical Chemistry Chemical Phy-sics, 2016, 18(8), 6069.
82 Abate M A, Dehvari K, Chang J Y, et al. Dalton Transactions, 2019, 48(42), 16115.
83 Hua J, Zhang Y, Yuan X, et al. Superlattices and Microstructures, 2014, 73, 214.
84 Sabri N S, Deni M S, Zakaria A, et al. Physics Procedia, 2012, 25, 233.
85 Cao S, Zheng J J, Dai C C, et al. Journal of Materials Science, 2018, 53, 1286.
86 Kim J H, Kim K H, Yoon S Y, et al. ACS Applied Materials & Interfaces, 2019, 11(8), 8250.
87 Jana S, Srivastava B B, Pradhan N. Journal of Physical Chemistry Letters, 2011, 2(14), 1747.
88 Srivastava B B, Jana S, Pradhan N. Journal of the American Chemical Society, 2011, 133(4), 1007.
89 Raevskaya A, Rozovik O, Novikova A, et al. RSC Advances, 2018, 8, 7550.
90 Zeng R S, Shen R A, Zhao Y Q, et al. CrystEngComm, 2014, 16(16), 3414.
91 Guchhait A, Pal A J. ACS Applied Materials & Interfaces, 2013, 5(10), 4181.
92 Zhou P, Zhang X S, Li L, et al. Optical Materials Express, 2015, 5(9), 2069.
93 Galiyeva P, Alem H, Rinnert H, et al. Inorganic Chemistry Frontiers, 2019, 6(6), 1422.
94 Zhu M B, Li Y X, Tian S Q, et al. Journal of Colloid and Interface Science, 2018, 534, 509.
95 Pradhan N. ChemPhysChem, 2016, 17(8), 1087.
96 Carey G H, Abdelhady A L, Ning Z, et al. Chemical Reviews, 2015, 115(23), 12732.
97 Cai C Q, Zhai L L, Ma Y H, et al. Journal of Power Sources, 2017, 341, 11.
98 Zhang H, Fang W J, Zhong Y Y, et al. Journal of Colloid and Interface Science, 2019, 547, 267.
99 Yue L, Rao H S, Du J, et al. RSC Advances, 2018, 8(7), 3637.
100 Park J, Sajjad M T, Jouneau P H, et al. Journal of Materials Chemistry A, 2016, 4(3), 827.
101 Pan Z X, Mora-Seró I, Shen Q, et al. Journal of the American Chemical Society, 2014, 136(25), 9203.
102 Pan Z, Zhao K, Wang J, et al. ACS Nano, 2013, 7(6), 5215.
103 Du J, Du Z L, Hu J S, et al. Journal of the American Chemical Society, 2016, 138(12), 4201.
104 Zhang L L, Pan Z X, Wang W, et al. Journal of Materials Chemistry A, 2017, 5(40), 21442.
105 Zhang H, Fang W J, Wang W R, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 6927.
106 Li T L, Lee Y L, Teng H. Energy & Environmental Science, 2012, 5(1), 5315.
107 Wang R B, Peng Z Y, Chen W, et al. Journal of Materials Science Materials in Electronics, 2015, 26(4), 2016.
108 Wang W, Feng W L, Du J, et al. Advanced Materials, 2018, 30(11), 1705746.
109 Jiao S, Du J, Du Z L, et al. Journal of Physical Chemistry Letters, 2017, 8(3), 559.
110 Li B X, Lu M X, Feng J T, et al. Journal of Materials Chemistry C, 2020, 8(31), 10676.
111 Da Q Q, Duty C E, Hu M Z. Small, 2010, 6(15), 1577.
112 Lin C C, Liu R S. Journal of Physical Chemistry Letters, 2011, 2(11), 1268.
113 Hu Y S, Zhuang W D, Ye H Q, et al. Journal of Alloys and Compounds, 2005, 390(1-2), 226.
114 Wood V, Bulovi V. Nano Reviews, 2010, 1, 5202.
115 Jung H, Chung W, Lee C H, et al. Applied Optics, 2013, 52(10), 1992.
116 Chung W, Jung H, Lee C H, et al. Journal of Materials Chemistry C, 2014, 2(21), 4227.
117 Peng L C, Li D, Zhang Z, et al. Nano Research, 2015, 8(10), 3316.
118 Wei J X, Hu Z, Zhou W J, et al. Journal of Colloid and Interface Science, 2021, 602, 307.
119 Guan H L, Zhao S Y, Wang H X, et al. Nano Energy, 2017, 67, 104219.
120 Xu Y Q, Chen T, Xie Z X, et al. Chemical Engineering Journal, 2021, 403, 126372.
121 Li Z T, Li J X, Deng Z H, et al. IEEE Transactions on Electron Devices, 2021, 68(4), 1738.
122 Achilefu S. Chemical Reviews, 2010, 110(5), 2575.
123 Frangioni J V. Current Opinion in Chemical Biology, 2003, 7(5), 626.
124 Pons T, Pic E, Lequeux N, et al. ACS Nano, 2010, 4(5), 2531.
125 Deng D W, Qu L Z, Zhang J, et al. ACS Applied Materials & Interfaces, 2013, 5(21), 10858.
126 Matysiak E, Bujak P, Augustin E, et al. Nanoscale, 2017, 10(3), 1286.
127 Zang Z G, Zeng X F, Wang M, et al. Sensors and Actuators B:Chemical, 2017, 252, 1179.
128 Song J, Ma C, Zhang W, et al. ACS Applied Materials & Interfaces, 2016, 8(37), 24826.
129 MansurA, Mansur H S, Carvalho S M, et al. Contrast Media & Molecular Imaging, 2017, 2017, 3896107.
130 Pooja D, Saini S, Thakur A, et al. Journal of Hazardous Materials, 2017, 328, 117.
131 Ackerman C M, Chang C J. Journal of Biological Chemistry, 2017, 293, 4628.
132 Seok Y, Byun J Y, Shim A W B, et al. Analytica Chimica Acta, 2015, 886(30), 182.
133 Szpunar J, Bettmer J, Robert M, et al. Talanta, 1997, 44(8), 1389.
134 Zhu Y, Inagaki K, Chiba K. Journal of Analytical Atomic Spectrometry, 2009, 24(9), 1179.
135 Liu Y F, Zhu T, Deng M, et al. Journal of Luminescence, 2018, 201, 182.
136 Liu Y F, Deng M, Tang X, et al. Sensors & Actuators B Chemical, 2016, 233, 25.
137 Yin H, Truskewycz A, Cole I S. Microchimica Acta, 2020, 187(6), 336.
[1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[2] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[3] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[4] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[5] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[6] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[7] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[8] 田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
[9] 李佳佳, 张瑞龙, 张忠平. 亚铁离子荧光探针研究进展[J]. 材料导报, 2023, 37(2): 21030055-8.
[10] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[11] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[12] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[13] 赵玉辉, 张雅荣, 吴勇民, 朱蕾, 郭俊, 汤卫平. NASICON结构Na3Zr2Si2PO12固体电解质研究进展[J]. 材料导报, 2022, 36(Z1): 21050235-9.
[14] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[15] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed