Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21100044-6    https://doi.org/10.11896/cldb.21100044
  无机非金属及其复合材料 |
S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究
刘晨曦1, 庞国旺1, 潘多桥1, 史蕾倩1, 张丽丽1,*, 雷博程1,*, 赵旭才1, 黄以能1,2
1 伊犁师范大学物理科学与技术学院,新疆凝聚态相变与微结构实验室,新疆 伊宁 835000
2 南京大学物理学院,固体微结构物理国家重点实验室,南京 210093
First-principles Study on Electronic Structure and Optical Properties of S and Al Doped Monolayer g-C3N4
LIU Chenxi1, PANG Guowang1, PAN Duoqiao1, SHI Leiqian1, ZHANG Lili1,*, LEI Bocheng1,*, ZHAO Xucai1, HUANG Yineng1,2
1 Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter, College of Physical Science and Technology, Yili Normal University, Yining 835000, Xinjiang, China
2 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
下载:  全 文 ( PDF ) ( 4411KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 g-C3N4是一种典型的聚合物半导体材料,在可见光下就能完成对半导体要求较高的光催化反应。采用基于密度泛函理论的第一性原理平面波超软赝势方法研究了单层g-C3N4、S单掺g-C3N4、Al单掺g-C3N4和S-Al共掺g-C3N4的形成能、电子结构及光学性质。结果表明:S掺杂空隙I位置、Al掺杂N2位置时,杂质原子最易掺入g-C3N4体系。与单层g-C3N4相比,掺杂后的体系均发生了晶格畸变以及红移现象,拓展了体系的光吸收范围,可推测出S、Al掺杂能够提高g-C3N4体系的光催化性。其中,S-Al共掺杂体系的光催化性是最优的,原因是共掺杂体系的分子轨道有较强的离域性,有利于提高载流子的迁移率,并且共掺杂能使单掺杂引入的深能级变浅,减少杂质能级上的复合中心。因此,本工作提出的S-Al共掺杂可作为提高g-C3N4光催化活性的一种有效手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晨曦
庞国旺
潘多桥
史蕾倩
张丽丽
雷博程
赵旭才
黄以能
关键词:  掺杂  石墨相氮化碳  电子结构  光学性质  第一性原理    
Abstract: The g-C3N4 is a typical polymer semiconductor material, which can complete the photocatalytic reaction with high requirements for semiconductors under visible light. The electronic structures and optical properties of monolayer g-C3N4, S doped g-C3N4, Al doped g-C3N4, and S-Al doped g-C3N4 systems were investigated using plane-wave density functional theory with ultra-soft pseudopotentials. The results showed that the impurity atoms are most likely to be doped into g-C3N4 system at the position of S doped gap I and Al doped N2. Compared with the monola-yer g-C3N4, the doped systems have lattice distortion and redshift phenomenon, which expands the light absorption range of the system. It can be inferred that S, Al doped can improve the photocatalytic performance of the g-C3N4 system. The photocatalytic performance of the S-Al co-doped system is the best, because the molecular orbital of the co-doped system have strong delocalization, which is beneficial to improve the mobility of carriers. And it can make the deep energy level introduced by single doping shallow, and reduce the appearance of recombination center on the impurity energy level. Therefore, S-Al co-doped system can be used as an effective means to improve the photocatalytic activity of g-C3N4.
Key words:  doped    graphite phase carbon nitride    electronic structure    optical property    first-principle
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  O643.36  
基金资助: 新疆维吾尔自治区重点实验室开放课题(2021D04015);新疆维吾尔自治区高校科技计划项目(XJEDU2021Y044);伊犁师范大学博士启动基金(2021YSBS009);自治区研究生创新项目(XJ2021G323)
通讯作者:  *张丽丽,于2020年获得南京大学博士学位,现为伊犁师范大学物理科学与技术学院副教授,主要从事玻璃化转变机制、金属氧化物电子结构的计算机模拟研究,已在Scientific Reports、International Journal of Modern Physics B、European Physical Journal E、Journal of Molecular Modeling、OPTIK等期刊上发表论文80余篇。suyi2046@sina.com
雷博程,2019年毕业于伊犁师范大学,获得理学硕士学位。现为伊犁师范大学物理科学与技术学院讲师,目前从事金属氧化物磁性及光催化性能领域的研究,发表论文10余篇。lbc0428@sina.com   
作者简介:  刘晨曦,2019年6月毕业于伊犁师范大学,获得理学学士学位。现为伊犁师范大学物理科学与技术学院硕士研究生,在张丽丽副教授的指导下进行研究。目前主要从事氧化物半导体、二维材料及异质结光催化及磁性等领域的研究。
引用本文:    
刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
LIU Chenxi, PANG Guowang, PAN Duoqiao, SHI Leiqian, ZHANG Lili, LEI Bocheng, ZHAO Xucai, HUANG Yineng. First-principles Study on Electronic Structure and Optical Properties of S and Al Doped Monolayer g-C3N4. Materials Reports, 2023, 37(9): 21100044-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100044  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21100044
1 Cao S, Yu J. The Journal of Physical Chemistry Letters, 2014, 5(12), 2101.
2 Mao N, Gao X, Zhang C, et al. Dalton Transactions:an International Journal of Inorganic Chemistry, 2019, 48(39), 14864.
3 Fei X, Tan H, Cheng B, et al. Journal of Physical Chemistry, 2020, 37(6), 2010027.
4 Antil B, Kumar L, Ranjan R, et al. ACS Applied Energy Materials, 2021, 4(4), 3118.
5 Fu J, Xu Q, Low J, et al. Applied Catalysis B, Environmental, 2019, 243, 556.
6 Song Y, She X, Yi J, et al. Physica Status Solidi (A), 2017, 214(5), 1600704.
7 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
8 Na S, Seo S, Lee H. Catalysts, 2020, 10(6), 679.
9 Wang X, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1), 76.
10 Zhu B, Zhang L, Cheng B, et al. Chinese Journal of Catalysis, 2021, 42(1), 115.
11 Li H, Wu Y, Li L, et al. Applied Surface Science, 2018, 457, 735.
12 Tong T, Zhu B, Jiang C, et al. Applied Surface Science, 2018, 433, 1175.
13 Ye J, Liu J, An Y. Applied Surface Science, 2020, 501, 144262.
14 Liu X, Ma R, Zhuang L, et al. Critical Reviews in Environmental Science and Technology, 2021, 51(8), 751.
15 Cui J, Liang S, Wang X, et al. Materials Chemistry and Physics, 2015, 161, 194.
16 Guo Y, Xia M, Zhang M, et al. Physical Chemistry Chemical Physics:PCCP, 2021, 23(11), 6632.
17 Zhu B, Zhang J, Jiang C, et al. Applied Catalysis B:Environmental, 2017, 207, 27.
18 Nie G, Li P, Liang J, et al. Journal of Theoretical and Computational Chemistry, 2017, 16(2), 1750013.
19 Gorai D K, Kundu T. Materials and Manufacturing Processes, 2020, 35(6), 625.
20 Gorai D K, Kundu T K. Materials Science Forum, 2020, 978, 369.
21 Gorai D K, Kundu T K. Materials Today Communications, 2021, 26(1), 101911.
22 Clark S J, Segall M D, Pickard C J, et al. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5-6), 567.
23 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
24 Tkatchenko A, Scheffler M. Physical Review Letters, 2009, 102(7), 73005.
25 Chadi D J. Physical Review B, 1977, 16(4), 1746.
26 Teter D M, Hemley R J. Science, 1996, 271(5245), 53.
27 Xie Z, Sui Y, Buckeridge J, et al. Applied Physics Letters, 2018, 112(26), 262101.
28 Wan J, Yang W J, Liu J Q, et al. Chinese Journal of Catalysis, 2022, 43(2), 485.
29 Ivanov A S, Miller E, Boldyrev A I, et al. The Journal of Physical Chemistry C, 2015, 119(21), 12008.
30 Zhu G, Lü K, Sun Q, et al. Computational Materials Science, 2014, 81, 275.
31 Li B, Nengzi L, Guo R, et al. Chinese Chemical Letters, 2020, 31(10), 2705.
32 Huang D, Wang K, Yu L, et al. ACS Energy Letters, 2018, 3(8), 1875.
33 Tang D, Zhong S P. Chemical Journal of Chinese Universities, 2021, 42(8), 2509 (in Chinese).
唐定, 衷水平. 高等学校化学学报, 2021, 42(8), 2509.
34 Guan Y Q, Hou Q Y, Gu Y L. Materials Reports, 2022, 36(2), 39 (in Chinese).
关玉琴, 侯清玉, 谷玉兰. 材料导报, 2022, 36(2), 39.
35 Zhang R, Xie D, Leng Y X, et al. Materials Reports, 2019, 33(Z2), 383 (in Chinese).
张然, 谢东, 冷永祥, 等. 材料导报, 2019, 33(Z2), 383.
36 Al F. Frontier Orbitals and Reaction Paths:Selected Papers of Kenichi Fukui, World Scientific, Japan, 1997, pp. 277.
37 Liu Z, Yu X, Li L. Chinese Journal of Catalysis, 2020, 41(4), 534.
38 Zhang L L, Xia T, Liu G A, et al. Acta Physica Sinica, 2019, 68(1), 245 (in Chinese).
张丽丽, 夏桐, 刘桂安, 等. 物理学报 , 2019, 68(1), 245.
39 Liu F Y, Xu L Y, Xiu Y, et al. Chemistry, 2021, 84(2), 108 (in Chinese).
刘方园, 徐鲁艺, 修阳, 等. 化学通报, 2021, 84(2), 108.
40 You X C. Journal of Chongqing University of Technology (Natural Science), 2020, 34(6), 123(in Chinese).
游晓畅. 重庆理工大学学报(自然科学), 2020, 34(6), 123.
41 Yan Y X, Zhang Y X, Zheng S, et al. Chinese Journal of Computational Physics, 2021, 38(4), 447 (in Chinese).
闫宇星, 张珏璇, 郑帅, 等. 计算物理, 2021, 38(4), 447.
42 Chen W, Meng Z S, Liang J W, et al. Science China:Physics, Mechanics & Astonomy, 2020, 50(4), 142 (in Chinese).
陈文, 蒙之森, 梁君武, 等. 中国科学:物理学 力学 天文学, 2020, 50(4), 142.
43 Pan F C, Lin X L, Cao Z J, et al. Acta Physica Sinica, 2019, 68(18), 141 (in Chinese).
潘凤春, 林雪玲, 曹志杰, 等. 物理学报, 2019, 68(18), 141.
44 Song X F, Sai X X, Li J, et al. Acta Physica Sinica, 2022, 71(1), 217 (in Chinese).
宋谢飞, 晒旭霞, 李洁, 等. 物理学报, 2022, 71(1), 217.
45 Fang W Y, Zhang P C, Zhao J. Materials Reports, 2021, 35(10), 10017 (in Chinese).
方文玉, 张鹏程, 赵军. 材料导报, 2021, 35(10), 10017.
46 Pham T A, Ping Y, Galli G. Nature Materials, 2017, 16(4), 401.
47 Sivasamy R, Paredes G K, Quero F. Physica E:Low-dimensional Systems & Nanostructures, 2022, 135, 114994.
[1] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[2] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[3] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[4] 田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
[5] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[6] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[7] 赵玉辉, 张雅荣, 吴勇民, 朱蕾, 郭俊, 汤卫平. NASICON结构Na3Zr2Si2PO12固体电解质研究进展[J]. 材料导报, 2022, 36(Z1): 21050235-9.
[8] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[9] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[10] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[11] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[12] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[13] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[14] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[15] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed