Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21010130-8    https://doi.org/10.11896/cldb.21010130
  高分子与聚合物基复合材料 |
荧光水凝胶传感器及其传感响应机制研究进展
饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹*, 陈维毅
太原理工大学生物医学工程学院, 太原 030024
Fluorescent Polymeric Hydrogels Sensors and Their Sensing Mechanisms:a Review
RAO Chunxing, LIAO Jingwen, ZHANG Xuehui, WU Xiaogang, WANG Yanqin*, CHEN Weiyi
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 22612KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 荧光水凝胶是一类具有三维交联网络、荧光发射性能的新型高分子复合材料,能够在外界目标分析物的刺激下发生荧光强度或荧光发射颜色的改变。因此,荧光水凝胶能够作为定量检测目标分析物浓度的重要工具,并且表现出良好的荧光稳定性与检测便携性。近年来,研究人员开发出了多种基于不同类型响应机制的荧光水凝胶传感探针,并应用于各种类型目标分析物的检测。在传统的荧光水凝胶传感器的设计过程中,大多数是基于目标分析物与水凝胶内部的荧光材料间高度的特异性识别功能,这需要目标分析物与荧光材料之间的高度一一对应关系,限制了此类荧光水凝胶传感器的检测广泛性。然而,通过间接性作用构建的荧光水凝胶能够引入一个中间媒介作为桥梁进一步实现各类目标分析物的特异性识别与响应。该种级联响应目标分析物的方式打破了传统荧光水凝胶传感器的局限性。本文根据荧光水凝胶传感体系构建过程中所涉及到的信号响应机制,将荧光水凝胶传感器分为三大类,主要包括直接响应型、竞争性响应型、非竞争性响应型,这对于启发人们构建新型荧光水凝胶传感器具有重要的参考意义。最后,对荧光水凝胶传感器在检测领域所面临的机遇与挑战进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
饶春兴
廖静文
张雪慧
武晓刚
王艳芹
陈维毅
关键词:  水凝胶  荧光传感器  响应机制  竞争性响应  非竞争性响应    
Abstract: Fluorescent hydrogel is a new type of polymer composite with three-dimensional cross-linked networks and fluorescence emission properties. The fluorescence intensity or fluorescence emission color can change under the stimulation of external target analytes. Hence, fluorescent hydrogel can serve as an essential tool for the quantitative detection of target analyte concentration, while also offering good fluorescence stability and detection portability. In recent years, researchers have developed various fluorescent hydrogel sensing probes based on different types of response mechanisms, and have applied them in the detection of various types of target analytes. The design of traditional fluorescent hydrogel sensors is typically based on a highly specific recognition function between the target analytes and fluorescent material inside the hydrogel, which requires a high one-to-one correspondence between the target analytes and fluorescent material, limiting the detection range of such fluorescent hydrogel sensors. However, fluorescent hydrogels based on indirect interaction can introduce an intermediate medium as a bridge to further achieve specific recognition and response to various target analytes. This cascade response to target analytes overcomes the limitations of conventional fluorescent hydrogel sensors. Based on the signal response mechanisms involved in the fabrication of fluorescent hydrogel sensing systems, the fluorescent hydrogel sensors are classified into three major categories in this paper: direct response, competitive response, and non-competitive response. This paper provides important insights for the fabrication of new fluorescent hydrogel sensors. Finally, the prospects and challenges associated with fluorescent hydrogel sensors in the field of detection are summarized and discussed.
Key words:  hydrogel    fluorescent sensor    responsive mechanism    competitive responsive    non-competitive responsive
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  O63  
基金资助: 国家自然科学基金 (1217224;11972242);山西省高等学校科技创新项目(2019L0169);山西省自然科学基金面上项目(20210302123158);山西浙大新材料与化工研究院技术开发项目(2022SX-TD023)
通讯作者:  *王艳芹,太原理工大学生物医学工程学院副教授、硕士研究生导师。2013年毕业于南开大学,获得理学博士学位。目前主要研究方向为生物医用高分子材料、纳米荧光生物传感器设计。主持国家自然科学青年基金、山西省青年基金、面上项目等科研项目,以第一或通信作者身份发表SCI学术论文26篇。wangyanqin@tyut.edu.cn   
作者简介:  饶春兴,2018年6月毕业于湖北科技学院,获得工学学士学位。现为太原理工大学生物医学工程学院硕士研究生。目前主要研究方向为生物医用高分子材料的制备以及力学、荧光性能的分析。
引用本文:    
饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
RAO Chunxing, LIAO Jingwen, ZHANG Xuehui, WU Xiaogang, WANG Yanqin, CHEN Weiyi. Fluorescent Polymeric Hydrogels Sensors and Their Sensing Mechanisms:a Review. Materials Reports, 2023, 37(5): 21010130-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010130  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21010130
1 Liu W, Zhang W S, Yu X Q, et al. Polymer Chemistry, 2016, 7(37), 5749.
2 Liu M N, Ma X F, Li C H, et al. Jorunal of Functional Materials. 2021, 52(6), 6033.
刘美娜, 马小芳, 李程豪, 等. 功能材料, 2021, 52(6), 6033.
3 Gao X H, Du C, Zhuang Z H, et al. Journal of Materials Chemistry C, 2016, 4(29), 6927.
4 Chen L Y, Wang C W, Yuan Z, et al. Analytical Chemistry, 2015, 87(1), 216.
5 Duong H D, Shin Y, Rhee J I. Materials Science & Engineering C-Materials for Biological Applications, 2020, 107, 110323.
6 Chen Y, Wang Y, Wang C X, et al. Journal of Colloid and Interface Science, 2013, 396, 63.
7 Lee K M, Oh Y, Chang J Y, et al. Journal of Materials Chemistry B, 2018, 6(8), 1244.
8 Ma P L, Zhang Y K, Song Y T, et al. Jorunal of Functional Materials, 2022, 53(12), 12189 .
马培林, 张一昆, 宋亚婷, 等. 功能材料, 2022, 53(12), 12189.
9 Wei S X, Li Z, Lu W, et al. Angewandte Chemie-International Edition, 2021, 60(16), 8608.
10 Qing Z H, Mao Z G, Qing T P, et al. Analytical Chemistry, 2014, 86(22), 11263.
11 Shao J, Yu Q J, Wang S, et al. Macromolecular Materials and Engineering, 2019, 304(11), 1900326.
12 Sun X C, Lei Y. Trac-Trends in Analytical Chemistry, 2017, 89, 163.
13 Madhu C, Roy B, Makam P, et al. Chemical Communications, 2018, 54(18), 2280.
14 Jia H Y, Li Z, Wang X L, et al. Journal of Materials Chemistry A, 2015, 3(3), 1158.
15 Ehtesabi H, Roshani S, Bagheri Z, et al. Journal of Environmental Chemical Engineering, 2019, 7(5), 103419.
16 Zou C C, Foda M F, Tan X C, et al. Analytical Chemistry, 2016, 88(14), 7395.
17 Zhan Y J, Yan J J, Wu M, et al. Talanta, 2017, 174, 365.
18 Kim Y, Kim D, Jang G, et al. Sensors and Actuators B-Chemical, 2015, 207, 623.
19 Bigdeli A, Ghasemi F, Abbasi-Moayed S, et al. Analytica Chimica Acta, 2019, 1079, 30.
20 Zhan Y J, Zeng Y B, Li L, et al. ACS Sensors, 2019, 4(5), 1252.
21 Meng K, Yao C, Ma Q M, et al. Advanced Science, 2019, 6(10), 1802112.
22 Gui B, Meng Y, Xie Y, et al. Advanced Materials, 2018, 30(34), 1802329.
23 Lustig W P, Mukherjee S, Rudd N D, et al. Chemical Society Reviews, 2017, 46(11), 3242.
24 Hou L, Qin Y X, Li J Y, et al. Biosensors & Bioelectronics, 2019, 143, 111605.
25 Trigo-Mourino P, Thestrup T, Griesbeck O, et al. Science Advances, 2019, 5(8), eaaw4988.
26 Su J, Huang S S, He S, et al. Chemical Research in Chinese Universities, 2016, 32(1), 20.
27 Tan B, Zhao H M, Du L, et al. Biosensors & Bioelectronics, 2016, 83, 267.
28 Sachdev A, Raj R, Matai I, et al. Analytical Methods, 2019, 11(9), 1214.
29 Kim Y, Namgung H, Lee T S. Polymer Chemistry, 2016, 7(43), 6655.
30 Xu S Y, Sedgwick A C, Elfeky S A, et al. Frontiers of Chemical Science and Engineering, 2020, 14(1), 112.
31 Duong H D, Rhee J I. Sensors, 2017, 17(11), 2570.
32 Geng F H, Zou C P, Liu J H, et al. Analytica Chimica Acta, 2019, 1076, 131.
33 Liu Q, Yan X, Lai Q, et al. Sensors and Actuators B-Chemical, 2019, 282, 45.
34 Park H I, Park S Y. ACS Applied Materials & Interfaces, 2018, 10(36), 30172.
35 Kong D H, Jin R, Wang T S, et al. Biosensors & Bioelectronics, 2019, 145, 111706.
36 Lutz J F, Akdemir O, Hoth A. Journal of the American Chemical Society, 2006, 128(40), 13046.
37 Zhang F, Wang M K, Zeng D N, et al. Analytica Chimica Acta, 2019, 1089, 123.
38 Ou G Z, Zhao J, Chen P, et al. Analytical and Bioanalytical Chemistry, 2018, 410(10), 2485.
39 Li X Q, Zhou Z, Tang Y P, et al. Sensors and Actuators B-Chemical, 2018, 276, 95.
40 Shen X R, Yang X D, Su C Y, et al. Journal of Materials Chemistry C, 2018, 6(8), 2088.
41 Wang D, Liu T, Yin J, et al. Macromolecules, 2011, 44(7), 2282.
42 Li Y, Huang Z Z, Weng Y H, et al. Chemical Communications, 2019, 55(76), 11450.
43 Ge M H, Sun J J, Chen M L, et al. Analytical and Bioanalytical Chemistry, 2020, 412(8), 1915.
[1] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[2] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[3] 王通, 王广飞, 张淑敏, 曲承蕾, 李诚博, 高永林. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 20060050-9.
[4] 胡丹娜, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 生理pH下可控释放胰岛素的温度/葡萄糖双响应可注射复合水凝胶[J]. 材料导报, 2022, 36(3): 21040234-7.
[5] 宗丹, 盛扬, 李新庆, 潘艳, 孙一新, 邓林红, Mark Bradley, 张嵘. 以聚醚聚酯丙烯酸酯为交联剂的pH响应性水凝胶纳米微球的制备及药物释放研究[J]. 材料导报, 2022, 36(14): 21020090-7.
[6] 贾梦伟, 张婕, 周顺风, 杨云鹏, 卢立新. 环境响应水凝胶的非对称结构设计与智能仿生[J]. 材料导报, 2022, 36(12): 20100208-9.
[7] 吕颖, 胡永琴, 厚琛, 张超, 刘玉菲. 丙烯酸/丙烯酰胺/碳纳米管复合水凝胶及其传感性能研究[J]. 材料导报, 2022, 36(12): 21030154-7.
[8] 李心, 郭琳, 黄金的, 王丽, 谢海泉, 叶立群. 碳材料/甲壳素复合水凝胶高效太阳能海水淡化[J]. 材料导报, 2022, 36(12): 21030098-6.
[9] 罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟. 磁诱导高取向水凝胶的构筑及功能[J]. 材料导报, 2021, 35(5): 5206-5213.
[10] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[11] 孙会娟. UHMWPE人工髋关节的接枝改性进展[J]. 材料导报, 2021, 35(11): 11208-11214.
[12] 王毓, 任俊鹏, 赵君, 周进康, 李小平. 磁性壳聚糖半互穿热膨胀水凝胶的制备及对Cr(Ⅵ)的吸附性能[J]. 材料导报, 2021, 35(10): 10205-10210.
[13] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[14] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[15] 张晓琳, 丰晓婷, 詹世平, 卢春兰, 李鸣明, 侯维敏. 基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用[J]. 材料导报, 2020, 34(5): 5142-5147.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed