Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21030098-6    https://doi.org/10.11896/cldb.21030098
  高分子与聚合物基复合材料 |
碳材料/甲壳素复合水凝胶高效太阳能海水淡化
李心1,2, 郭琳2, 黄金的2, 王丽1,2, 谢海泉2, 叶立群1
1 三峡大学材料与化工学院,无机非金属晶态与能源转换材料重点实验室,湖北 宜昌 443002
2 南阳师范学院河南省太阳能催化工程技术研究中心,河南 南阳 473061
Carbon Material/Chitin Composite Hydrogel for Efficient Solar Desalination
LI Xin1,2, GUO Lin2, HUANG Jindi2, WANG Li1,2, XIE Haiquan2, YE Liqun1
1 Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002,Hubei, China
2 Engineering Technology Research Center of Henan Province for Solar Catalysis, Nanyang Normal University, Nanyang 473061, Henan, China
下载:  全 文 ( PDF ) ( 11705KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着世界工业化和城市化水平的提高,人类可直接利用的淡水资源日益减少,对淡水资源的需求急剧增加,淡水的制备和净化技术愈发重要。太阳能海水淡化技术可将无穷无尽的太阳能转变成热量,加热蒸发海水使其变成蒸汽,蒸汽冷凝制得淡水,是一种具备广阔前景的解决淡水短缺问题的技术。然而,太阳能海水淡化一直受到太阳能吸收材料成本高、效率低的限制。本工作设计并制备一种新型复合水凝胶,该复合水凝胶由太阳光吸收体(碳材料)和天然高分子(甲壳素)组成,增加太阳光利用,提高海水淡化效率,最高可达75%。在1 kW/m2太阳光照下,其蒸发速率超过1.5 kg/(m2·h),蒸汽效率最高为98.34%。而且该复合水凝胶具有成本低、结构多孔、制造工艺简单、可回收性强、机械稳定性好等优点。因此,碳材料/甲壳素复合水凝胶作为太阳光吸收体具有将光能转化为热能的潜力,为海水淡化开辟了新的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李心
郭琳
黄金的
王丽
谢海泉
叶立群
关键词:  海水淡化  太阳能  水凝胶  碳材料  甲壳素    
Abstract: With the acceleration of the world's industrialization and urbanization, the freshwater resources that can be directly used by human beings are declining, and the demand for freshwater resources is increasing sharply. Freshwater preparation and purification technologies become more and more critical. Solar seawater desalination technology converts endless solar energy into heat, helping heat the evaporated seawater into steam, and finally the steam was condensed to produce fresh water; it is a promising technology to solve the problem of fresh water shortage. However, solar seawater desalination has always been restricted by high cost and low efficiency of solar absorbing materials. In this work, a new type of composite hydrogel was designed and prepared. The composite hydrogel was composed of sunlight absorber (carbon material) and natural polymer (chitin), which increased sunlight utilization and improved seawater desalination efficiency up to 75%. Under 1 kW/m2 sunlight, the evaporation rate exceeded 1.5 kg/(m2·h), and the highest steam efficiency is 98.34%. Moreover, the composite hydrogel showed the advantages of low cost, porous structure, simple manufacturing process, strong recyclability and excellent mechanical stability. Therefore, the carbon material/chitin composite hydrogel as a solar light absorber has the potential to convert light into heat energy, opening up a new way for seawater desalination.
Key words:  seawater desalination    solar energy    hydrogel    carbon materials    chitin
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  O69  
基金资助: 国家自然科学基金(51872147);111计划(D20015);河南省高等学校科技创新团队支持计划(19IRTSTHN025)
通讯作者:  18211861386@163.com;lqye@ctgu.edu.cn   
作者简介:  李心,2018年9月开始在南阳师范学院就读硕士研究生,主要研究方向为太阳能海水淡化。
叶立群,三峡大学材料与化工学院教授,硕士研究生导师。2013年博士毕业于武汉大学,2015-2016年在中国香港中文大学做访问学者。主要研究方向为光催化材料设计与制备、水体污染物治理及利用、温室气体转化利用。共主持国家自然科学基金3项,以第一/通信作者在Angew. Chem. Int. ed.、Adv. Funct. Mater.、Adv. Energy. Mater、Environ. Sci. Technol.、ACS Catal、Coord. Chem. Rev. 、ACS Materials Letters、Appl. Catal. B: Environ.、J. Mater. Chem A等国际著名期刊上发表SCI论文90余篇,其中ESI Highly Cited Paper 20篇,h-index为54,共被他引10 000余次,入选2020年、2021年科睿唯安全球“高被引科学家”。
引用本文:    
李心, 郭琳, 黄金的, 王丽, 谢海泉, 叶立群. 碳材料/甲壳素复合水凝胶高效太阳能海水淡化[J]. 材料导报, 2022, 36(12): 21030098-6.
LI Xin, GUO Lin, HUANG Jindi, WANG Li, XIE Haiquan, YE Liqun. Carbon Material/Chitin Composite Hydrogel for Efficient Solar Desalination. Materials Reports, 2022, 36(12): 21030098-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030098  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21030098
1 Jarvis W T. Groundwater, 2020, 58, 494.
2 Mckee K M, Koprivnikar J, Johnson P T J, et al. Oecologia, 2020, 192, 477.
3 Dong F, Mi C, Hupfer M, et al. Hydrological Processes, 2020, 34, 1131.
4 Zambrano M C, Pawlak J J, Daystar J, et al. Marine Pollution Bulletin, 2020, 151, 110826.
5 Pang K L, Luo Z H, Burgaud G. Botanica Marina, 2020, 63, 119.
6 Ramlow H, Machado R A F, Bierhalz A C K, et al. Environmental Technology, 2020, 41, 2253.
7 Ali A, Tufa R A, Macedonio F, et al. Renewable & Sustainable Energy Reviews, 2018, 81, 1.
8 González D, Amigo J, Suárez F. Renewable & Sustainable Energy Reviews, 2017, 80, 238.
9 Qin M, Deshmukh A, Epsztein R, et al. Desalination, 2019, 455, 100.
10 Ahmed F E, Hashaikeh R, Hilal N. Desalination, 2019, 453, 54.
11 Anis S F, Hashaikeh R, Hilal N. Desalination, 2019, 452, 159.
12 Lin J, Qin G, Jia C. Desalination and Water Treatment, 2020, 182, 434.
13 Alpatova A, Alsaadi A, Ghaffour N. Journal of Hazardous Materials, 2018, 351, 224.
14 Alotaibi S, Ibrahim O M, Luo S, et al. Desalination, 2017, 420, 114.
15 Qi C H, Lv H Q, Feng H J, et al. Desalination and Water Treatment, 2017, 87, 14.
16 Zhang F, Xu S, Feng D, et al. Desalination, 2017, 404, 112.
17 Goodarzi S, Jahanshahi J E, Rahnama M, et al. Desalination, 2019, 460, 64.
18 Boukhriss M, Zhani K, Bacha H B. International Journal of Advanced Manufacturing Technology, 2017, 88, 55.
19 Al-Karaghouli A, Kazmerski L L. Renewable & Sustainable Energy Reviews, 2013, 24, 343.
20 Al-Jaroudi S S, Ul-Hamid A, Al-Matar J A. Desalination, 2010, 260, 119.
21 Alexandras D, David A, Vermaas R H, et al. Renewable Energy, 2014, 64, 123.
22 Tufa R A, Pawlowski S, Veerman J, et al. Applied Energy, 2018, 225, 290.
23 Li C, Luo M, Cao J, et al. Desalination and Water Treatment, 2020, 185, 27.
24 Dongare P D, Alabastri A, Pedersen S, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6936.
25 Xu Z, Zhang L, Zhao L, et al. Energy & Environmental Science, 2020,13, 830.
26 Xiao P, Gu J, Zhang C, et al. Nano Energy, 2019, 65, 2211.
27 Yang H C, Chen Z W, Song Y. Advanced Materials Interfaces, 2019, 6, 1801252.
28 Shen X, Shamshina J L, Berton P, et al. Green Chemistry, 2016, 18, 53.
29 Zhou X, Zhao F, Guo Y, et al. Advancement of Science, 2019, 5, eaaw5484.
30 Chen Q, Chen H, Zhu L, et al. Journal of Materials Chemistry B, 2015, 3, 3654.
31 Wang X H, Song F, Qian D, et al. Chemical Engineering Journal, 2018, 349, 588.
32 Li W, An H, Tan Y, et al. Soft Matter, 2012, 8, 5078.
33 Ding F Y, Shi X W, Jiang Z W, et al. Journal of Materials Chemistry B, 2013, 1, 1729.
34 Ifuku S, Morooka S, Morimoto M, et al. Biomacromolecules, 2010, 11, 1326.
35 Kangwansupamonkon W, Tiewtrakoonwat W, Supaphol P, et al. Journal of Applied Polymer Science, 2014, 131, 8558.
36 Pradal C, Kithva P, Martin D, et al. Journal of Materials Chemistry, 2011, 21, 2330.
37 Roy P S, Samanta A, Mukherjee M, et al. Industrial & Engineering Chemistry Research, 2013, 52, 15728.
38 Zuo X J. Industrial & Engineering Chemistry Research, 2014, 53, 1249.
39 Jiang W, Wang W, Pan B, et al. ACS Applied Materials & Interfaces, 2014, 6, 3421.
40 Bratskaya S, Marinin D, Simon F, et al. Biomacromolecules, 2007, 8, 2960.
[1] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[2] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[3] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[4] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[5] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[6] 王通, 王广飞, 张淑敏, 曲承蕾, 李诚博, 高永林. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 20060050-9.
[7] 胡丹娜, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 生理pH下可控释放胰岛素的温度/葡萄糖双响应可注射复合水凝胶[J]. 材料导报, 2022, 36(3): 21040234-7.
[8] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[9] 贾梦伟, 张婕, 周顺风, 杨云鹏, 卢立新. 环境响应水凝胶的非对称结构设计与智能仿生[J]. 材料导报, 2022, 36(12): 20100208-9.
[10] 吕颖, 胡永琴, 厚琛, 张超, 刘玉菲. 丙烯酸/丙烯酰胺/碳纳米管复合水凝胶及其传感性能研究[J]. 材料导报, 2022, 36(12): 21030154-7.
[11] 张钰禄, 胡谦, 叶倩, 吴佳喜, 李秋实, 苏柑锚, 杜官本, 徐开蒙. 甲壳素/丝素蛋白复合薄膜结晶特性变化研究[J]. 材料导报, 2022, 36(11): 20100142-6.
[12] 范鸿志, 阿拉腾宝力格, 阿拉塔, 宁君, 塔娜, 特古斯. 可溶液加工对称A-D-A有机小分子太阳能电池给体材料研究进展[J]. 材料导报, 2022, 36(10): 20070075-11.
[13] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[14] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[15] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed