Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20100142-6    https://doi.org/10.11896/cldb.20100142
  高分子与聚合物基复合材料 |
甲壳素/丝素蛋白复合薄膜结晶特性变化研究
张钰禄1,2, 胡谦1, 叶倩1, 吴佳喜1, 李秋实1, 苏柑锚1, 杜官本1,2, 徐开蒙1,2
1 西南林业大学科技部生物质材料国际联合研究中心,昆明 650224
2 西南林业大学材料科学与工程学院,昆明 650224
Study on the Variation of Crystal Properties of Chitin/Silk Fibroin Biocomposite Films
ZHANG Yulu1,2, HU Qian1, YE Qian1, WU Jiaxi1, LI Qiushi1, SU Ganmao1, DU Guanben1,2, XU Kaimeng1,2
1 International Joint Research Center for Biomass Materials, Chinese Ministry of Science and Technology, Southwest Forestry University, Kunming 650224, China
2 School of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China
下载:  全 文 ( PDF ) ( 9591KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于甲壳纲壳体角质层组成成分的仿生启示,以甲壳素(CT)和丝素蛋白(SF)两种天然高分子为主要原料,通过流延法在不同配比及干燥条件下(常规和真空)制备CT/SF复合薄膜,采用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、紫外-可见分光光度计(UV-Vis)、热重分析仪(TG)和X射线衍射仪(XRD)和力学试验机等表征手段研究复合薄膜的结晶特性及其相关性能变化。结果表明:随着m(CT)∶m(SF)从1∶4变化到4∶1,在常规干燥条件下,复合膜的晶体表观形貌从松散的“点线辐射状”逐步过渡为稠密的“丝网状”;在真空干燥条件下,薄膜表观晶体形貌从“雪花状”过渡到“蠕虫状”,再到“点线状”。当m(CT)∶m(SF)为4∶1时,干燥条件对复合膜晶形的微观形貌影响最大,从常规干燥条件下的“叠层鳞片状”转变为真空干燥条件下的“仙人球状”,相同比例下不结晶的复合膜在微观下出现直径约60 nm的微晶。在可见光波长范围大于500 nm时,m(CT)∶m(SF)为1∶4的复合膜在常规干燥下的平均透过率最高,为97.3%。在真空干燥条件下m(CT)∶m(SF)为4∶1时制备的不结晶复合膜综合力学性能和热稳定性较佳,其拉伸强度和断裂伸长率分别为1.28 MPa和134%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张钰禄
胡谦
叶倩
吴佳喜
李秋实
苏柑锚
杜官本
徐开蒙
关键词:  甲壳素  丝素蛋白  复合  结晶特性    
Abstract: Chitin (CT) and silk fibroin (SF) were selected as raw materials inspired by the chemical component of crustacean shell cuticle. The CT/SF biocomposite films were prepared by a facile casting method with the various CT/SF ratios and drying conditions (conventional and vacuum drying). The crystalline properties and the variation of other related characteristics for the biocomposite film were characterized by SEM, FTIR, UV-Vis, TG, XRD and electronic mechanical testing machine. The results show that as the ratio of m(CT)∶m(SF) varies from 1∶4 to 4∶1, the crystal appearance of the CT/SF biocomposite film gradually transforms from a loose ‘radial dotted line' to a dense ‘filiform net' under the conventional drying, while from “snow flower-like” to “worm-like” and then to “dotted line” under the vacuum drying. The drying condition plays a significant role on the variation of micro-morphology of the crystals of the biocomposite film when the ratio of m(CT)∶m(SF) is 4∶1, changing from the ‘scaly layer' under the conventional drying to the ‘cactus ball' under the vacuum drying. Meanwhile, some microcrystals with a diameter of about 60 nm appear in the biocomposite film without crystallization at the same ratio. The biocomposite film with a m(CT)∶m(SF) ratio of 1∶4 under the conventional drying exhibits the highest average transmittance (97.3%) when the wavelength of visible light is beyond 500 nm.The non-crystalline biocomposite film with the m(CT)∶m(SF) ratio of 4∶1 under the vacuum drying shows the optimum comprehensive mechanical properties and thermal stability, corresponding to the tensile strength and elongation at break of 1.28 MPa and 134%, respectively.
Key words:  chitin    silk fibroin    biocomposite    crystallization
发布日期:  2022-06-09
ZTFLH:  TQ35  
基金资助: 云南省应用基础研究面上项目(202201AT070058;2019FB067);国家自然科学基金(32060381);云南省教育厅科学研究基金项目(2022Y552);云南省万人计划青年拔尖人才专项(YNWR-QNBJ-2020-203);国家级大学生创新创业训练项目(202110677009)
通讯作者:  xukm007@163.com   
作者简介:  张钰禄,2018年毕业于邵阳学院能源与动力工程专业,现为西南林业大学材料科学与工程学院生物质能源与材料专业硕士研究生,主要研究方向为生物基仿生功能材料。
徐开蒙,西南林业大学材料科学与工程学院教授、硕士研究生导师,入选2018年云南省科协青年托举工程人才和2020年度云南省“万人计划”青年拔尖人才项目。2005年9月至2009年7月,在华南农业大学获木材科学与工程专业工学学士学位,2009年9月至2014年7月硕博连读,在华南农业大学获生物质复合材料专业工学博士学位。2018—2019年受国家留学基金委西部特别人才计划支持到美国田纳西大学可再生碳研究中心生物质材料课题组访学,在国内外学术期刊上发表论文60余篇,其中SCI收录近30篇,申请国家发明和实用新型专利共12项,其中授权8项。担任多个国际国内学术期刊的审稿人。主要研究工作为天然生物质资源高效利用制备及构建生物基复合及纤维功能材料及结构性能控制的基础理论和应用研究,主持包括国家自然科学基金、云南省应用基础研究项目(面上和青年)、云南省农业联合面上项目、世界自然基金会(瑞士)、云南省科技特派员项目和云南省外专引智项目等10余项。获中国产学研合作创新成果二等奖1项、中国林学会梁希青年论文和优秀学子奖。
引用本文:    
张钰禄, 胡谦, 叶倩, 吴佳喜, 李秋实, 苏柑锚, 杜官本, 徐开蒙. 甲壳素/丝素蛋白复合薄膜结晶特性变化研究[J]. 材料导报, 2022, 36(11): 20100142-6.
ZHANG Yulu, HU Qian, YE Qian, WU Jiaxi, LI Qiushi, SU Ganmao, DU Guanben, XU Kaimeng. Study on the Variation of Crystal Properties of Chitin/Silk Fibroin Biocomposite Films. Materials Reports, 2022, 36(11): 20100142-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100142  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20100142
1 Tao F, Cheng Y, Shi X, et al. Carbohydrate Polymers, 2020, 230, 115658.
2 Huang W, Ling S, Li C, et al. Chemical Society Reviews, 2018, 47(17), 6486.
3 Zhu B, Wang H, Leow W R, et al. Advanced Materials, 2016, 28(22), 4250.
4 Luo J, Zhang L, Peng Q, et al. International Journal of Biological Macromolecules, 2014, 66, 319.
5 Kim H J, Kim J H, Jun K W, et al. Advanced Energy Materials, 2016, 6(8), 1502329.
6 Shao Z Z.Silk, spider silk and silk protein, Chemical Industry Press, 2015,pp.36(in Chinese).
邵正中.蚕丝、蜘蛛丝及其丝蛋白, 化学工业出版社, 2015,pp. 36.
7 Murphy A R, Kaplan D L.Journal of Materials Chemistry, 2009, 19(36), 6443.
8 Zhang X Z, Situ F M, Peng P, et al. Chinese Journal of Tissue Enginee-ring Research, 2015, 19(12), 1858(in Chinese).
张霞只, 司徒方民, 彭鹏, 等. 中国组织工程研究, 2015, 19(12), 1858.
9 Fan S N, Chen J, Gu Z H, et al. Acta Polymerica Sinica, 2021, 52(1), 1(in Chinese).
范苏娜, 陈杰, 顾张弘, 等. 高分子学报, 2021, 52(1), 1.
10 Nikolov S, Petrov M, Lymperakis L, et al. Advanced Materials, 2010, 22(4), 519.
11 Rosen M N, Baran K A, Sison J N, et al. Acta Biomaterialia, 2020, 110, 196.
12 Liu S, Sun J, Yu L, et al. Molecules, 2012, 17, 4604.
13 Soon C Y, Tee Y B, Tan C H, et al. International Journal of Biological Macromolecules, 2018, 108, 135.
14 Lamarque G, Viton C, Domard A.Biomacromolecules,2004,5(3),992.
15 Baimark Y, Srisaard M, Srihanam P.Express Polymer Letters, 2010, 4(12), 781.
16 Duan B, Chang C Y, Ding B B, et al. Journal of Materials Chemistry A, 2013, 1(5), 1867.
17 Mohan K, Ravichandran S, Muralisankar T, et al. International Journal of Biological Macomolecules, 2019, 126, 555.
18 Osada M, Miura C, Nakagawa Y S, et al. Carbohydrate Polymers, 2012, 88, 308.
[1] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[2] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[3] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[4] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[5] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[6] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[7] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[8] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[9] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[10] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[11] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[12] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[13] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[14] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[15] 谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed