Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21030154-7    https://doi.org/10.11896/cldb.21030154
  高分子与聚合物基复合材料 |
丙烯酸/丙烯酰胺/碳纳米管复合水凝胶及其传感性能研究
吕颖1, 胡永琴1,2, 厚琛1,2, 张超3, 刘玉菲1,2
1 重庆大学光电技术及系统教育部重点实验室,重庆 400044
2 重庆大学光电工程学院智能感知技术中心(CIST),重庆 400044
3 北京卫星环境工程研究所,北京 100094
Acrylic Acid/Acrylamide/Carbon Nanotubes Based Hydrogel and the Sensing Performance
LYU Ying1, HU Yongqin1,2, HOU Chen1,2, ZHANG Chao3, LIU Yufei1,2
1 Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
2 Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
3 Beijing Satellite Environmental Engineering Research Institute, Beijing 100094
下载:  全 文 ( PDF ) ( 6731KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以甘油/水二元溶剂为分散介质、丙烯酸/丙烯酰胺为单体、过硫酸铵为引发剂、N,N′-亚甲基双丙烯酰胺为交联剂,采用红外照射自由基聚合的方法,本工作成功合成了聚丙烯酸/丙烯酰胺/碳纳米管(AA/AM/CNTs)掺杂复合凝胶,并使用电子万能试验机和数字源表等对其进行表征以及性能测试。结果表明,甘油的引入使得凝胶具有高保湿性能,且可以在-20~ 60 ℃的温度范围内稳定存放7 d以上。CNTs的引入使得凝胶的抗压缩能力得到显著提高。此外,该凝胶在压力传感方面显示出良好的稳定性和可重复性,其压力传感器的电流变化可反映人体的运动形态,可利用该传感器监测人体活动(如膝盖弯曲、手肘运动、手腕弯曲以及手指运动)。监测结果表明,该CNTs掺杂凝胶在诊断关节类疾病方面具有潜在的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕颖
胡永琴
厚琛
张超
刘玉菲
关键词:  复合水凝胶  保湿凝胶  碳纳米管  压力传感器  人体活动监测    
Abstract: With binary glycerol/water as dispersion medium, acrylic acid/acrylamide as monomer, ammonium persulfate as initiator, and N,N′-methylenebisacrylamide as crosslinking agent, poly (acrylic acid/acrylamide/carbon nanotubes (AA/AM/CNTs) doped hydrogel were successfully fabricated with using the infrared irradiation radical polymerization method, and then studied by using the universal testing machine and electronic source-meter for characterization and performance testing. The results have shown that the introduction of glycerol makes the gel have great moisture properties, which can be maintained at -20—60 ℃ for more than 7 d. The anti-compression ability of the hydrogel has been improved via adding CNTs. In addition, the gel pressure sensors, showing good stability and repeatability, can be applied to human activities monitoring, such as knee bends, elbow movement, wrist and finger movement, the current changes of the gel pressure sensors reflect the human body movement. It is indicated that the CNTs doping hydrogel has a great application potential of joint disease diagnosis.
Key words:  composite hydrogel    hydrating gel    carbon nanotube    pressure sensor    human activity monitoring
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TB33  
基金资助: 中央高校基本科研业务费专项资金(2020CDJGFCG006);国家重点研发计划项目(2016YFE0125200);国家自然科学基金(61927818)
通讯作者:  Yufei.Liu@cqu.edu.cn   
作者简介:  吕颖,重庆大学硕士研究生。2018年6月于哈尔滨理工大学获得测控技术与仪器专业工学学士学位。现主要从事水凝胶类智能材料与智能传感器的研究工作。
刘玉菲,重庆大学光电工程学院教授,分别于2003年、2006年和2011年获得北京大学、中国科学院和赫瑞-瓦特大学(Heriot-Watt University)的物理学理学学士学位、微电子与固体电子学硕士学位及电子科学与技术博士学位,其研究重点聚焦于MEMS技术、先进传感技术及便携式诊断技术等,发表学术论文50余篇,申请发明专利20余项。
引用本文:    
吕颖, 胡永琴, 厚琛, 张超, 刘玉菲. 丙烯酸/丙烯酰胺/碳纳米管复合水凝胶及其传感性能研究[J]. 材料导报, 2022, 36(12): 21030154-7.
LYU Ying, HU Yongqin, HOU Chen, ZHANG Chao, LIU Yufei. Acrylic Acid/Acrylamide/Carbon Nanotubes Based Hydrogel and the Sensing Performance. Materials Reports, 2022, 36(12): 21030154-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030154  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21030154
1 Hou W, Sheng N, Zhang X, et al. Carbohydrate Polymers, 2019, 211, 322.
2 Xia S, Song S, Gao G. Chemical Engineering Journal, 2018, 354, 817.
3 Gao H, Zhao Z, Cai Y, et al. Nature Communications, 2017, 8,15911.
4 Yang H, Qi D, Liu Z, et al. Advenced Materials, 2016, 28(41), 9175.
5 Rong Q, Lei W, Huang J, et al. Advanced Energy Materials, 2018, 8(31), 1801967.
6 Rong Q, Lei W, Chen L, et al. Angewandte Chemie International, 2017, 56(45),14159.
7 Shi S, Peng X, Liu T, et al. Polymer, 2017, 111,168.
8 Kratochvilova I, Golan M, Pomeisl K, et al. RSC Advances, 2017, 7(1),352.
9 Qin Z, Dong D, Yao M, et al. ACS Applied Materials Interfaces, 2019, 11(23), 21184.
10 Mo F, Liang G, Meng Q, et al. Energy & Environmental Science, 2019, 12(2), 706.
11 Hong S H, Cho Y, Kang S W. Journal of Industrial and Engineering Chemistry, 2020, 91,79.
12 Peng Y, Yan B, Li Y, et al. Journal of Materials Science, 2019, 55(3),1280.
13 Luo X, Yu X, Ma Y, et al. Thermochimica Acta, 2018, 663,1.
14 Adewunmi A A, Ismail S, Sultan A S. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26(4),717.
15 Li L, Liao X, Sheng X, et al. RSC Advances, 2019, 9(23),12864.
16 Monea B F, Ionete E I, Spiridon S I, et al. Sensors, 2019, 19(11),191122464.
17 Marko M, Milos M, Patricia Y W D, et al. Macromolecular Bioscience, 2019, 19(1),e1800173.
18 Qin Z, Sun X, Yu Q, et al. ACS Applied Materials Interfaces, 2020, 12(4),4944.
19 Sun X, Qin Z, Ye L, et al. Chemical Engineering Journal, 2020, 382,122832.
20 Wang P, Zhang X, Duan W, et al. Chinese Journal of Chemistry, 2020, 37,000543.
[1] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[2] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[3] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[4] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[5] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[6] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[7] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[8] 谢丹丹, 张宝荣, 赵晖, 刘君, 宋安康, 朱国本, 马爱珍, 宋文文, 赵海峰. 镍源对催化酚醛树脂原位生成碳纳米管的影响[J]. 材料导报, 2021, 35(z2): 46-49.
[9] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[10] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[11] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[12] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[13] 张令坤, 孟俊行, 侯成义, 张青红, 李耀刚, 王宏志. 多刺激响应的MWCNTs-CS/AFP双层致动器:能量的转化与应用[J]. 材料导报, 2021, 35(20): 20155-20160.
[14] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[15] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed