Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21030181-5    https://doi.org/10.11896/cldb.21030181
  金属与金属基复合材料 |
锂金属电极与LiCl界面相互作用的第一性原理研究
吴苗苗, 于虎, 王咏琪, 窦睿然, 胡泊, 朱爽秋, 马向东
中国矿业大学(北京)材料科学与工程系,北京 100083
First-principles Study on the Interface Interaction of Li and LiCl in Lithium Metal Batteries
WU Miaomiao, YU Hu,WANG Yongqi, DOU Ruiran, HU Po, ZHU Shuangqiu, MA Xiangdong
Department of Materials Science and Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
下载:  全 文 ( PDF ) ( 5407KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂金属因具有高理论容量及低还原电势等优点,是最具潜力的下一代高能量密度电池负极材料。但金属锂具有活跃的化学特性,在电池中易与电解质发生反应,导致锂枝晶的生长,进而使锂电池发生短路,影响其使用。研究表明,在固态电解质界面(SEI)膜形成过程中添加LiF可以调控锂在表面沉积的形貌,稳定电极/电解质界面,但机理尚不明确。本工作拟采用基于密度泛函理论的第一性原理研究方法,构建了金属Li和LiCl表面模型,通过对该模型电子态密度、Li在LiCl表面的吸附能以及Li在LiCl表面的扩散能垒等的计算,研究发现在SEI中添加LiCl可以对锂金属负极起到保护作用,为探索锂金属电池体系中稳定锂金属负极及界面保护材料的设计提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴苗苗
于虎
王咏琪
窦睿然
胡泊
朱爽秋
马向东
关键词:  锂金属电池  LiCl界面  第一性原理研究  吸附    
Abstract: Due to its high theoretical capacity and low reduction potential, lithium metal is the most potential anode material of the next generation high energy density batteries. However, lithium metal reacts easily with electrolyte in the battery because of its active chemical properties, leading to the growth of lithium dendrite, which in turn occurs short circuit of lithium battery and affects its use. Studies have shown that adding LiF during the formation of the solid electrolyte interface membrane (SEI) can control the morphology of lithium deposition on the surface and stabilize the electrode/electrolyte interface, but the mechanism is still unclear. By using first-principles methods based on density functional theory, this work studied a metal Li and LiCl interface model, calculated the structure's electronic density of states, the adsorption energy of Li on the surface of LiCl, and the diffusion barrier of Li on LiCl surface, analyzed the mechanism of the interface interaction,it is found that the addition of LiCl in SEI can protect the lithium metal anode. It provides new ideas for designing of stable lithium metal anodes and interface protection materials in lithium metal battery systems.
Key words:  lithium battery    LiCl interface    first-principles theory    adsorption
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  O469  
基金资助: 国家重点研发计划项目(2017YFB0601904);国家自然科学基金(11404395);中央高校基本科研业务费专项基金项目(2022YQJD01);国家大学生创新训练项目(202204004)
通讯作者:  miaomwu@cumtb.edu.cn   
作者简介:  吴苗苗,中国矿业大学(北京)副教授。2012年毕业于北京大学工学院,获材料学博士学位,同年加入中国矿业大学(北京)材料系工作至今。在国内外重要期刊发表文章30余篇,主要从事关于纳米材料研究工作,研究重点包括零维纳米团簇、团簇组装材料以及二维纳米材料的结构与性能,及其在能源存储方面的应用。
引用本文:    
吴苗苗, 于虎, 王咏琪, 窦睿然, 胡泊, 朱爽秋, 马向东. 锂金属电极与LiCl界面相互作用的第一性原理研究[J]. 材料导报, 2022, 36(12): 21030181-5.
WU Miaomiao, YU Hu,WANG Yongqi, DOU Ruiran, HU Po, ZHU Shuangqiu, MA Xiangdong. First-principles Study on the Interface Interaction of Li and LiCl in Lithium Metal Batteries. Materials Reports, 2022, 36(12): 21030181-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030181  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21030181
1 Wu X H. Frist principle study of the interface between lithium metal anode and electrolyte. Master's Thesis, Institute of Process Engineering, Chinese Academy of Sciences. China, 2019(in Chinese).
吴小红. 锂金属电极/电解质界面的第一性原理研究. 硕士学位论文, 中国科学院过程工程研究所, 2019.
2 Lin D, Liu Y, Cui Y. Nature Nanotechnology, 2017,12,194.
3 Peled E, Yamin H. Israel Journal of Chemistry, 1979,18,1.
4 Stadler R, Wolf W, Podloucky R, et al. Physical Review B,1996, 54, 1729.
5 Paier J, Marsman M, Hummer K, et al. Acm Transactions on Computer Systems, 1996,14,2121215.
6 Fan L, Zhuang H L, Gao L. Journal of Materials Chemistry A,2017,5,3483.
7 Liu Z, Qi Y, Lin Y X. Journal of the Electrochemical Society, 2016,163,A592.
8 Recker F W, Dupre K. Naturwissenschaften, 1988,75,156.
9 Mari E, Floriani I, Tinazzi A. Annals of Oncology, 2000,11,837.
10 Corbett P F, Feitelson D G. Acm Transactions on Computer Systems, 1996,14,225.
11 Ozhabes Y, Gunceler D, Arias T A. Physics, 2015,1,1.
12 Duffy D M, Harding J H, Stoneham A M. Acta Materialia,1996,44,3293.
13 Shi L, Xu A, Zhao T. ACS Applied Materials & Interfaces, 2017,9,1987.
14 Yang J, Huang J, Fan D. Applied Surface Science, 2016,384,207.
15 Zhukovskii Y F, Kotomin E A, Jacobs P W M. Surface Science,1999,441,373.
16 Mattesini M, Matar, S F. Computational Materials Science, 2001,20,107.
17 Paled E. Journal of the Electrochemical Society, 1979,123,2047.
18 Liu Q, Qi Y, Lin Y X, et al. Journal of the Electrochemical Society,2016,163,A592.
19 Shi Z, Liu S, Zhou Y. Journal of Alloys and Compounds,2019,773,264.
20 Yidirim H, Kinaci A, Chan M K. ACS Applied Materials & Interfaces, 2015,7,18985.
21 Wang A, Kadam S, Li H. Npj Computational Materials. 2018,4,1.
22 Wang T, Zhao N, Shi C. Journal of Physical Chemistry C, 2017,121,19559.
23 Saskia Stegmaier, Johannes Voss, Karsten Reuter, et al. Chemistry of Materials, 2017,29,4330.
24 Gu Xingxing, Dong Jing, Lai Chao. Engineering Reports, 2021, 3, e12339.
25 Luo X, Zhu M. Journal of Chongqing University of Technology:Natural Science, 2022, 36(3),63 (in Chinese).
罗雪松,朱茂桃. 重庆理工大学学报(自然科学版), 2022,36(3),63.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[3] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[4] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[5] 张航, 马蓉, 弓亮, 黄丽丽, 陈南春, 解庆林, 马丽丽. 硅藻基Cr(VI)表面离子印迹吸附材料的制备及其对Cr(VI)的吸附性能[J]. 材料导报, 2022, 36(8): 21010050-7.
[6] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[7] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[8] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[9] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[10] 宋文琦, 霍文娟, 杨金腾, 罗晨, 訾帅, 刘玉坤, 历亚星, 钱立伟. 氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理[J]. 材料导报, 2022, 36(12): 21030276-7.
[11] 张帆, 纪志永, 汪婧, 郭志远, 方嘉炜, 郭小甫, 赵颖颖, 刘杰, 袁俊生. GO/LiMn2O4膜电极构建及其提锂性能研究[J]. 材料导报, 2022, 36(11): 21040052-7.
[12] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[13] 许闯, 张祖华, 陈慕翀, 史才军, 李宁, 刘翼玮. 层状双金属氢氧化物在水泥混凝土中的形成、作用机制及应用[J]. 材料导报, 2022, 36(11): 21020078-7.
[14] 刘小林, 张勇, 张林, 罗炫. Cu2O-CuO/TiO2复合壳聚糖/马来酸酐/二乙烯基苯的制备及吸附-降解染料性能研究[J]. 材料导报, 2022, 36(1): 20100124-6.
[15] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed