Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5206-5213    https://doi.org/10.11896/cldb.19020152
  高分子与聚合物基复合材料 |
磁诱导高取向水凝胶的构筑及功能
罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟
西安工业大学材料与化工学院,西安 710021
Construction and Functions of Magnetically Induced Highly Oriented Hydrogels
LUO Tao, MA Aijie, BAI Haiyan, CHENG Yongbo, ZHOU Hongwei
School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
下载:  全 文 ( PDF ) ( 4933KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁诱导制备高取向水凝胶可赋予其各向异性的支持、驱动、传输、结构等特殊功能,从而使得高取向水凝胶成为生物工程材料应用的理想候选者。同时,磁诱导制备方法不受限于材料尺寸且取向方向容易控制,是目前较为简单、有效的制备高取向水凝胶的方法之一。本文主要从各向异性偶极-偶极作用力和磁能角度分析了磁性纳米填料及非磁性材料在磁场作用下的取向机理;阐述了磁诱导取向水凝胶在仿生学领域的最新研究进展;最后,对磁诱导构建取向水凝胶的未来研究和发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗涛
马爱洁
白海燕
程勇博
周宏伟
关键词:  取向结构水凝胶  磁诱导  各向异性  偶极-偶极作用  磁能    
Abstract: Highly oriented hydrogels prepared by magnetically induced can give the gel support, drive, transmission, structure and other special anisotropic functions, thus hydrogels have long been regarded as promising candidates for bioengineering materials applications. Meanwhile, the magnetic-field-induced strategy is one of the simpler and more effective strategies for prepared oriented hydrogel because the orientation direction and shape of the hydrogel samples are not limited. In this review, we aim to summarize the orientation mechanism of magnetic nanofillers and non-magnetic materials under the magnetic field, and mainly from the perspective of anisotropic dipole-dipole force and magnetic energy. The latest research progress of magnetically induced orientation hydrogels in the field of bionics is expounded. Finally, the future research and deve-lopment of magnetically induced oriented hydrogels are prospected.
Key words:  oriented structure hydrogel    magnetically induced    anisotropy    dipole-dipole interaction    magnetic energy
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  O631.2  
基金资助: 陕西省自然科学基础研究计划重大基础研究项目(2017ZDJC-22);陕西省教育厅自然科学专项项目(17JK0380)
通讯作者:  maaijie@ xatu.edu.cn   
作者简介:  罗涛,2017年6月毕业于西安工业大学,获得工学学士学位。现为西安工业大学材料与化工研究院研究生,在马爱洁教授的指导下进行研究。目前主要研究领域为面向人工心肌组织的各向异性3D打印水凝胶材料。
马爱洁,西安工业大学材料与化工研究院副教授、硕士研究生导师。2002年本科毕业于西安工业大学材料与化工学院,2014年7月在西北工业大学理学院取得博士学位,北京航天航空大学博士后,2005年至今西安工业大学工作任高分子系副主任。主要从事3D/4D打印智能材料以及自修复材料研究工作。主持陕西省自然基金重大项目等10余项课题。近年来,发表高水平科研论文20余篇。
引用本文:    
罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟. 磁诱导高取向水凝胶的构筑及功能[J]. 材料导报, 2021, 35(5): 5206-5213.
LUO Tao, MA Aijie, BAI Haiyan, CHENG Yongbo, ZHOU Hongwei. Construction and Functions of Magnetically Induced Highly Oriented Hydrogels. Materials Reports, 2021, 35(5): 5206-5213.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020152  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5206
1 Jaclyn A D. Medicine & Science in Sports & Exercise,2010,41(6),134.
2 Wakelam M J. Biochemical Journal,1985,228(1),1.
3 Boote C, Dennis S, Huang Y. Journal of Structural Biology,2005,149(1),1.
4 Jana S, Sheeny L K, Zhang M Q, et al. Advanced Materials,2016,28(48),10588.
5 Wu J H, Hu Q M, Ma X, et al. Computerized Medical Imaging & Grap-hics,2013,37(1),4.
6 Zhou H W, Jin X L, Yan B, et al. Macromolecular Materials & Enginee-ring,2017, 302(2),1600352.
7 Omidinia-Anarkoli A, Boesveld S, Tuvshindorj U, et al. Small,2017,13(36),1702207.
8 Mitsumata T, Horikoshi Y, Takimoto J I. E-Polymers,2007,7(1),1717.
9 Mitsumata T, Horikoshi Y, Negami K. Japanese Journal of Applied Phy-sics,2008,47(9),7257.
10 Wu L L, Ohtani M, Takata M, et al. Acs Nano,2014,8(5),4640.
11 Lu Q, Bai S M, Ding Z Z, et al. Advanced Materials Interfaces,2016,3(8),1500687.
12 Tanaka Y, Kubota A, Matsusaki M, et al. Journal of Biomaterials Science Polymer Edition,2011,22(11),1427.
13 Zhu Z C, Yang L, Hui X, et al. Acs Applied Materials & Interfaces,2016,8(24),15637.
14 Lin P, Zhang T T, Wang X L, et al. Small,2016,12(32),4386.
15 Millon L E, Mohammadi H, Wan W K. Journal of Biomedical Materials Research Part B Applied Biomaterials,,2010,79B(2),305.
16 Hudson S D, Hutter J L, Nieh M P, et al. Journal of Chemical Physics,2009,130(3),37.
17 Gong J P, Wu Z L, Kurokawa T, et al. Macromolecules,2011,44(9),3535.
18 Gong J P, Wu Z L, Kurokawa T, et al. Journal of the American Chemical Society,2010,132(29),10064.
19 Whitesides G M, Mathias J P, Seto C T. Science,1991,254(5036),1312.
20 Wu J J, Zhao Q, Sun J Z, et al. Soft Matter,2012,8(13),3620.
21 Barrow M, Zhang H F. Soft Matter,2013,9(9),2723.
22 Bai H, Polini A, Delattre B, et al. Chemistry of Materials,2013,25(22),4551.
23 Kim Y, Yuk H, Zhao R K, et al. Nature,2018,558(7709),274.
24 Kimura T, Ago H, Tobita M, et al. 2002,14(19),1380.
25 Lalatonne Y, Richardi J, Pileni M P. Nature Materials,2004,3(2),121.
26 Gu N, Hu K, Sun J F, et al. Advanced Materials,2015,27(15),2507.
27 Yoonho K, Hyunwoo Y, Zhao R, et al. 2018,558(7709),274.
28 Otsukaa I, Abeb H, Ozeki S, et al. Science and Technology of Advanced Materials,2006, 7, 327.
29 Shibayama M, Suda J, Karino T, et al. Macromolecules,2004,37(25),9606.
30 Löwik D W P M, Shklyarevskiy I O, Ruizendaal L. Advanced Materials, 2007,19(9),1191.
31 Liebi M, Kuster S, Kohlbrecher J, et al. ACS Applied Materials & Interfaces,2014,6(2),1100.
32 Liu M J, Ishida Y, Ebina Y, et al. Nature,2015,517(7532),68.
33 Kim Y S, Liu M J, Ishida Y, et al. Nature Materials,2015,14(10),1002.
34 Chen S, Hirota N, Okuda M, et al. Acta Biomaterialia,2011,7(2),644.
35 Wallace M, Cardoso A Z, Frith W J, et al. Chemistry-A European Journal,2014,20(50),16484.
36 Maggini L, Liu M J, Ishida Y, et al. Advanced Materials,2013,25(17),2462.
37 Wu L L, Ohtani M, Takata M, et al. ACS Nano,2014,8(5),4640.
38 Hinrichs S, Nun N, Fischer B. Journal of Magnetism & Magnetic Mate-rials,2017,431(237),237.
39 Ngo A T, Pileni M P. Advanced Materials,2000,12(4),276.
40 Isabettini S, Stucki S, Massabni S, et al. ACS Applied Materials & Interfaces,2018,10(10),8926.
41 Varga Z, Filipcsei G, Zrínyi M. Polymer,2005,46(18),7779.
42 Xiong F, Tian J l, Hu K, et al. Nanoscale,2016,8(39),17085.
43 Shuai M, Klittnick A, Shen Y Q, et al. Nature Communications,2015,7(28),10394.
44 Braganza, Lellis F, Bloot H, et al. BBA-General Subjects,1984,801(1),66.
45 Yamamoto I, Ozawa S, Makino T, et al. Science and Technology of Advanced Materials,2008,9(2),024214.
46 Wallace M, Cardoso A Z, Frith W J, et al. Chemistry,2015,20(50),16484.
47 Marcus M, Skaat H, Alon N, et al. Nanoscale,2014,7(3),1058.
48 Antman-Passig M, Shefi O. Nano Letters,2016,16(4),2567.
49 Liu T Y, Chan T, Wang K Y, et al. Rsc Advances,2015,5(109),90098.
50 Whitaker M, Quirk R, Howdle S M, et al. Journal of Pharmacy & Pharmacology,2001,53(11),1427.
51 Berns E J, Sur S, Pan L L, et al. Biomaterials,2014,35(1),185.
52 Cai L, Dewi R E, Heilshorn S C. Advanced Functional Materials,2015,25(9),1344.
53 Seidlits S K, Gower R M, Shepard J A, et al. Expert Opinion on Drug Delivery,2013,10(4),499.
54 Griffin D R, Weaver W M, Scumpia P O, et al. Nature Materials,2015,14(7),737.
55 Diazbleis D, Valespinzón C, Freilepelegrín Y, et al. Carbohydr Polym,2014,99(1),84.
56 Wu J K, Gong X L, Fan Y C, et al. Soft Matter,2011,7(13),6205.
57 Norton L W, Koschwanez H E, Wisniewski N A, et al. Journal of Biomedical Materials Research Part A,2007,81A(4),858.
58 Laura M, Liu M J, Ishida Y, et al. Advanced Materials,2013,25(17),2462.
59 Liebi M, Kuster S, Kohlbrecher J, et al. Acs Appl Mater Interfaces,2014,6(2),1100.
60 Willis S A, Dennis G R, Zheng G, et al. Reactive & Functional Polymers,2013,73(7),911.
61 Abrahamsson C, Nordstierna A L, Bergenholtz A J. Soft Matter Bergenholtz,2014,10(24),4403.
62 Sakai Y, Oishi A, Takahashi F. Biotechnology Takahashi,et al. 1999,62(3),363.
63 Koki S, Youn S K, Yasuhiro I, et al. Nature Communications,2016,7(1),12559.
64 Leonid I. Materials Today,2014,17(10),494.
65 Zhu Z C, Senses E, Akcora P, et al. ACS Nano,2012,6(4),3152.
66 Calvert P. Advanced Materials,2009,21(7),743.
67 Erb R, Sander J, Grisch R, et al. Nature Communications,2013,4(2),1712.
[1] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[2] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[3] 于涵, 何雄, 张孔斌, 何斌, 罗丰, 孙志刚. 锗基半导体器件的界面磁阻效应和体磁阻效应[J]. 材料导报, 2021, 35(2): 2069-2073.
[4] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[5] 张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
[6] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[7] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[8] 罗磊, 李向明, 魏岑, 王献. 基于相场模拟的倾斜共晶生长研究进展[J]. 材料导报, 2020, 34(11): 11114-11120.
[9] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[10] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[11] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[12] 焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
[13] 马仕达, 汤爱涛, 彭鹏, 张根, 佘加, 黄光胜, 潘复生. Mg-9Al-1Mn合金热轧板材组织与性能[J]. 材料导报, 2018, 32(24): 4286-4291.
[14] 李蓉, 陈少平, 樊文浩, 陈彦佐, 徐礼彬, 王文先, 吴玉程. 孤对电子对碲热电传输性能的影响[J]. 材料导报, 2018, 32(21): 3726-3730.
[15] 何霄,邹宇新,邱佳佳,杨玺,李绍元,马文会. 交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 167-170.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed