Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22090241-10    https://doi.org/10.11896/cldb.22090241
  多尺度稀土晶体材料及其应用 |
基于稀土层状氢氧化物的荧光材料研究进展
陈露, 朱琦*, 孙旭东*
东北大学材料科学与工程学院,材料各向异性与织构工程教育部重点实验室,沈阳 110819
Recent Research on Luminescent Materials Derived from Layered Rare-earth Hydroxides
CHEN Lu, ZHU Qi*, SUN Xudong*
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education),School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 8174KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀土层状氢氧化物(LRHs)结合了层状化合物的结构特性和稀土离子的功能特性,代表了一类新的功能材料,在光电、催化以及生物医学等领域具有巨大的应用潜力。本文主要综述了LRHs的研究进展,包括Ln2(OH)5(Ax-)1/x·nH2O (251-LRHs)和Ln2(OH)4SO4·nH2O (241-LRHs)的可控合成、结构特征、阴离子交换、纳米片剥离,以及在发光领域的应用,重点关注251-LRHs晶体的尺寸和形貌调控及纳米片剥离,总结了LRHs及其煅烧衍生物(氧化物、含氧硫酸盐和硫氧化物)荧光粉、高取向透明薄膜、光学温度传感器的发光特性,展望了LRHs功能化设计的研究方向,以期为今后进一步开发LRHs新型功能材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈露
朱琦
孙旭东
关键词:  稀土层状氢氧化物(LRHs)  阴离子交换  纳米片剥离  荧光粉  薄膜  光学温度传感器    
Abstract: Layered rare-earth hydroxides (LRHs), having a unique combination of a layered structure and the functional properties of rare-earth elements, are a new family of functional materials. The compounds have potential applications in electro-optic, catalytic, biomedical fields and so forth. This review summarizes the recent research on LRHs, including controlled synthesis, structural features, anion exchange, nanosheet exfoliation, and application in the field of luminescence for both the Ln2(OH)5(Ax-)1/x·nH2O (251-LRHs) and Ln2(OH)4SO4·nH2O (241-LRHs). Particular attention is paid to the size and morphology control and nano sheets exfoliation in 251-LRHs. The luminescent behaviors of LRHs themselves and calcined derivatives of the oxide, oxysulfate, and oxysulfide for phosphors, highly oriented transparent films, and optical temperature sensors are the main content. Finally, the prospects of LRHs on novel functional materials are proposed, which provides a new way for future functional design.
Key words:  layered rare-earth hydroxides (LRHs)    anion exchange    nanosheets exfoliation    phosphor    film    optical temperature sensor
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51302032);辽宁省自然科学基金(2020-MS-081)
通讯作者:  *zhuq@smm.neu.edu.cn;xdsun@mail.neu.edu.cn,朱琦,东北大学材料科学与工程学院研究员、博士研究生导师,主要从事光功能陶瓷材料的合成、晶体结构解析及光学性能的研究。2006年7月、2008年7月分别于哈尔滨工程大学、东北大学获得工学学士学位和硕士学位,2012年于东北大学获得博士学位,博士期间在日本国立材料科学研究所(NIMS)联合培养两年。毕业工作后又再次留学日本在NIMS从事光功能陶瓷材料研究一年(访问学者)。在Chemistry of Materials、Chemical Enginee-ring Journal、Nanoscale、Journal of Materials Chemistry等期刊发表SCI收录论文140余篇,研究成果被引用4 000余次,授权国家发明专利23项。
孙旭东,东北大学材料科学与工程学院教授、博士研究生导师,国家杰出青年科学基金获得者(2004年)、俄罗斯自然科学院外籍院士。1982年7月获得东北大学金属学及热处理专业学士学位;1984年12月获得东北大学金属材料及热处理专业硕士学位;1993年11月获得英国 Surrey大学材料科学与工程专业博士学位。入选国家首届新世纪百千万人才工程(第一层次)计划、教育部创新团队发展计划、国家教育部跨世纪优秀人才培养计划等。曾任中国材料研究学会青委会理事、中国复合材料学会理事、美国陶瓷学会会员,现任中国颗粒学会理事。获得中国冶金青年科技奖等。主要研究方向为陶瓷材料、纳米粉体合成、贵金属材料。承担和完成国家自然科学基金(国家杰出青年科学基金,国家自然科学基金重大项目子课题、重点、面上项目等12项)、国家“863”计划、国家教育部创新团队发展计划、国防科工委军工项目等30余项科研课题。在Acta Mater.、Chem. Mater.等国内外刊物上发表论文300余篇,获得国家发明专利授权38项。   
作者简介:  陈露,东北大学材料科学与工程学院博士研究生,2017年6月、2021年6月分别于东北大学、上海大学(中国科学院上海硅酸盐研究所联合培养)获得工学学士学位和硕士学位,在朱琦研究员的指导下进行研究,目前主要研究领域为尖晶石型近红外长余辉荧光粉。
引用本文:    
陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
CHEN Lu, ZHU Qi, SUN Xudong. Recent Research on Luminescent Materials Derived from Layered Rare-earth Hydroxides. Materials Reports, 2023, 37(3): 22090241-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090241  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22090241
1 Jiang J W, Wagner N J, Sandler S I.Physical Chemistry Chemical Physics, 2004, 6(18), 4440.
2 Kim W S, Kim H C, Hong S H.Journal of Nanoparticle Research, 2010, 12(5), 1889.
3 Ogawa M, Kuroda K.Chemical Reviews, 1995, 95(2), 399.
4 Sasaki T, Watanabe M.Journal of the American Chemical Society, 1998, 120(19), 4682.
5 Auerbach S M, Carrado K A, Dutta P K.Handbook of layered materials, CRC press, New York, 2004, pp. 129.
6 Lee K, Lee B I, Byeon S H.Chemical Communications, 2013, 49(64), 7165.
7 Liu Z P, Ma R Z, Osada M, et al.Journal of the American Chemical Society, 2006, 128(14), 4872.
8 Fan G L, Li F, Evans D G, et al.Chemical Society Reviews, 2014, 43(20), 7040.
9 Geng F X, Ma R Z, Sasaki T.Accounts of Chemical Research, 2010, 43(9), 1177.
10 Gándara F, Perles J, Snejko N, et al.Angewandte Chemie International Edition, 2006, 45(47), 7998.
11 Geng F X, Matsushita Y, Ma R Z, et al.Journal of the American Chemical Society, 2008, 130(48), 16344.
12 Zhu Q, Li J G, Zhi C Y, et al.Chemistry of Materials, 2010, 22(14), 4204.
13 Liang J B, Ma R Z, Sasaki T.Dalton Transactions, 2014, 43(27), 10355.
14 Lee B I, Lee S Y, Byeon S H.Journal of Materials Chemistry, 2011, 21(9), 2916.
15 McIntyre L J, Jackson L K, Fogg A M.Journal of Physics and Chemistry of Solids, 2008, 69(5-6), 1070.
16 McIntyre L J, Jackson L K, Fogg A M.Chemistry of Materials, 2008, 20(1), 335.
17 Poudret L, Prior T J, McIntyre L J, et al.Chemistry of Materials, 2008, 20(24), 7447.
18 Geng F X, Matsushita Y, Ma R Z, et al.Inorganic Chemistry, 2009, 48(14), 6724.
19 Liang J B, Ma R Z, Geng F X, et al.Chemistry of Materials, 2010, 22(21), 6001.
20 Wang X J, Li J G, Molokeev M S, et al.Chemical Engineering Journal, 2016, 302(15), 577.
21 Geng F X, Xin H, Matsushita Y, et al.Chemistry-A European Journal, 2008, 14(30), 9255.
22 McIntyre L J, Prior T J, Fogg A M.Chemistry of Materials, 2010, 22(8), 2635.
23 Wang X J, Li J G, Zhu Q, et al.Journal of the American Ceramic Society, 2015, 98(10), 3236.
24 Lee K H, Byeon S H.European Journal of Inorganic Chemistry, 2009, 7, 929.
25 Lee K H, Byeon S H.European Journal of Inorganic Chemistry, 2009, 31, 4727.
26 Zhu Q, Li J G, Ma R Z, et al.Journal of Solid State Chemistry, 2012, 192, 229.
27 Zhu Q, Li J G, Zhi C, et al.Journal of Materials Chemistry, 2011, 21(19), 6903.
28 Wu X L, Li J G, Zhu Q, et al.Journal of Materials Chemistry C, 2015, 3(14), 3428.
29 Zhu Q, Li J G, Li X D, et al.RSC Advances, 2015, 5(79), 64588.
30 Wu X L, Li J G, Li J K, et al.Science and Technology of Advanced Materials, 2013, 14(1), 11.
31 Wu X L, Li J G, Ping D H, et al.Journal of Alloys and Compounds, 2013, 559, 188.
32 Zhu Q, Wang X J, Li J G.Journal of Advanced Ceramics, 2017, 6(3), 177.
33 Liang J B, Ma R Z, Ebina Y, et al.Inorganic Chemistry, 2013, 52(4), 1755.
34 Wang X J, Li J G, Zhu Q, et al.Journal of Alloys and Compounds, 2014, 603, 28.
35 Wang X J, Li J G, Molokeev M S, et al.RSC Advances, 2017, 7(22), 13331.
36 Zhu Q, Li J G, Li X D, et al.Science and Technology of Advanced Mate-rials, 2014, 15, 014203.
37 Hu L F, Ma R Z, Ozawa T C, et al.Chemistry-An Asian Journal, 2010, 5(2), 248.
38 Zhu Q, Xu Z X, Li J G, et al.Nanoscale Research Letters, 2015, 10(1), 1.
39 Bai M J, Liu X H, Sasaki T, et al.Nanoscale, 2021, 13(8), 4551.
40 Wu X L, Li J G, Zhu Q, et al.Dalton Transactions, 2012, 41(6), 1854.
41 Hu L F, Ma R Z, Ozawa T C, et al.Angewandte Chemie International Edition, 2009, 48(21), 3846.
42 Zhu Q, Zhang X M, Li J G, et al.Journal of Nanoscience and Nanotech-nology, 2017, 17(4), 2471.
43 Liu L L, Wang Q, Gao C J, et al.Journal of Physical Chemistry C, 2014, 118(26), 14511.
44 Liu L L, Yu M H, Zhang J, et al.Journal of Materials Chemistry C, 2015, 3(10), 2326.
45 Shen T T, Zhang Y, Liu W S, et al.Journal of Materials Chemistry C, 2015, 3(8), 1807.
46 Su F F, Gu Q Y, Ma S L, et al.Journal of Materials Chemistry C, 2015, 3(27), 7143.
47 Gu Q Y, Su F F, Ma L J, et al.Journal of Materials Chemistry C, 2015, 3(18), 4742.
48 Xie L X, Liu C Y, Ma L J, et al.Dalton Transactions, 2017, 46(10), 5.
49 Zhu Q, Li S Y, Jin J F, et al.Chemistry-An Asian Journal, 2018, 13(23), 3664.
50 Miyata K, Konno Y, Nakanishi T, et al.Angewandte Chemie International Edition, 2013, 52(25), 6413.
51 Weaver J B. Nature Nanotechnology, 2010, 5(9), 630.
52 Wang X D, Wolfbeis O S, Meier R J.Chemical Society Reviews, 2013, 42(19), 7834.
53 Zhu Q, Li S Y, Wang Q, et al.Nanoscale, 2019, 11(6), 2795.
54 Mao S, Chang J B, Pu H H, et al.Chemical Society Reviews, 2017, 46(22), 6872.
55 Chi Z, Chen H H, Chen Z, et al. ACS Nano, 2018, 12(9), 8961.
56 Li S X, Wang L, Hirosaki N, et al.Laser & Photonics Reviews, 2018, 12(12), 29.
57 Du Q P, Feng S W, Qin H M, et al.Journal of Materials Chemistry C, 2018, 6(45), 12200.
58 Sun B H, Zhang L, Zhou T Y, et al.Journal of Materials Chemistry C, 2019, 7(14), 4057.
59 Zhu Q, Ding S N, Xiahou J Q, et al.Chemical Communications, 2020, 56(84), 12761.
60 Yao J, Zhu Q, Li J G.Applied Surface Science, 2022, 579, 152226.
61 Liu L L, Wang Q, Xia D, et al.Chinese Chemical Letters, 2013, 24(2), 93.
62 Jeong H, Lee B I, Byeon S H.ACS Applied Materials & Interfaces, 2016, 8(17), 10946.
63 Jeon H G, Kim H, Byeon S H.Advanced Materials Interfaces, 2019, 6(22), 1901385.
64 Jung H, Kim H, Byeon S H.ACS Applied Materials & Interfaces, 2018, 10(49), 43112.
65 Guo R, Su F F, Wang H, et al.Inorganic Chemistry, 2019, 58(8), 4979.
66 Wang X J, Li J G, Zhu Q, et al.Journal of Materials Research, 2016, 31(15), 2268.
67 Wang X J, Li J G, Zhu Q, et al.Science and Technology of Advanced Materials, 2014, 15(1), 9.
68 Wang X J, Hu Z P, Zhu Q, et al.Journal of the American Ceramic Society, 2018, 101(7), 2701.
69 Wang X J, Hu Z P, Sun M, et al.Journal of Materials Research and Technology-JMR&T, 2020, 9(5), 10659.
70 Zhao X R, Li L J, Gong C S, et al.Journal of Synthetic Crystals, 2021, 50(1), 53 (in Chinese).
赵昕睿, 李龙娇, 龚长帅,等. 人工晶体学报, 2021, 50(1), 53.
71 Sun M, Hu Z P, Zhang L, et al.Journal of Functional Materials, 2021, 52(7), 07132 (in Chinese).
孙萌, 胡志鹏, 张岚,等. 功能材料, 2021, 52(7), 07132.
[1] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[2] 张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
[3] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[4] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[5] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[6] 张夏宇, 魏珊珊, 黄成, 王海兰, 董孟阳, 肖雨欣, 黄荣娟, 于涛. 新型三芳基乙烯光致变色材料的设计合成及其在光擦写薄膜中的应用[J]. 材料导报, 2022, 36(6): 20120263-5.
[7] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[8] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[9] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[10] 张亦文, 宋晚晴, 张士雨, 谢贵久, 季惠明. 元素掺杂对ITO薄膜材料性能影响的微观机制及研究进展[J]. 材料导报, 2022, 36(23): 21010015-9.
[11] 周国伟, 李枝兰, 王晓娇. 应力与取向调控超薄La0.7Sr0.3MnO3薄膜各向异性的研究[J]. 材料导报, 2022, 36(19): 21020016-6.
[12] 汪超翔, 郭冲霄, 刘 悦, 范同祥. 采用固体碳源制备石墨烯薄膜研究进展[J]. 材料导报, 2022, 36(16): 21030237-9.
[13] 王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
[14] 张栋凯, 吴凯, 刘刚, 孙军. PDMS基体上金属薄膜变形与断裂行为及其应变传感性能综述[J]. 材料导报, 2022, 36(13): 21010111-8.
[15] 陈丽, 黄银, 于元烈. 石墨烯基纳米复合薄膜及其摩擦学研究进展[J]. 材料导报, 2022, 36(11): 20090218-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed