Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21010015-9    https://doi.org/10.11896/cldb.21010015
  无机非金属及其复合材料 |
元素掺杂对ITO薄膜材料性能影响的微观机制及研究进展
张亦文1,2,*, 宋晚晴2, 张士雨2, 谢贵久2, 季惠明1,2
1 天津大学先进陶瓷与加工技术教育部重点实验室,天津 300350
2 天津大学材料科学与工程学院,天津 300350
Microscopic Mechanism and Research Progress of the Effects of Element Doping on the Properties of ITO Thin-film Materials
ZHANG Yiwen1,2,*, SONG Wanqing2, ZHANG Shiyu2, XIE Guijiu2, JI Huiming1,2
1 Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300350, China
2 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
下载:  全 文 ( PDF ) ( 5450KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透明导电氧化物(Transparent conducting oxides, TCOs)是一种重掺杂的半导体材料,在液晶显示屏、触摸屏、太阳能电池等领域都有广泛的应用。重掺杂、高简并的特性使得TCOs内存在大量的自由电子,具有接近金属的高电导率。同时,TCOs具有较大的禁带宽度,提供了高可见光透射率。氧化铟锡(Indium tin oxide,ITO)薄膜作为一种透明导电氧化物薄膜,具有禁带宽度宽、可见光透过性高、近红外反射性高及电阻率低等优点。因为,该材料是目前使用最广泛的透明导电氧化物,约占国际市场份额的97%。
ITO薄膜仍存在一些亟待解决的缺点,如In元素的稀缺性导致ITO薄膜成本较高、薄膜在近红外区域透光性较差、较大的脆性难以满足现代光电器件对柔性的要求等。随着科技发展以及各种电子元器件的更新换代,ITO薄膜的各项性能不再能满足应用的需要,如何进一步提高ITO薄膜的性能成为当今研究的一个热点。
对ITO薄膜进行元素掺杂可以提高其综合性能。高价金属元素的不等价置换可以产生自由电子,通过提高载流子浓度、载流子迁移率控制ITO薄膜载流子的散射机制,可以进一步优化薄膜的光电性能。在力学性能方面,通过引入杂质元素可以抑制ITO薄膜表面载流子迁移、提高其结晶温度,从而抑制薄膜的结晶,减小薄膜内应力。另一方面,为了应对高温、高压、强腐蚀性环境,利用元素掺杂可以促进钝化层的形成,提高化学键的稳定性。
本文综述了元素掺杂ITO薄膜的研究进展,介绍了杂质元素掺杂的手段,以及其对ITO薄膜光电特性、力学性能、稳定性影响的相关研究,总结了目前研究中尚存的盲区,并提出了元素掺杂ITO薄膜的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张亦文
宋晚晴
张士雨
谢贵久
季惠明
关键词:  ITO薄膜  掺杂  光电性能  力学性能  稳定性    
Abstract: Transparent conductive oxides (TCOs) are heavily-doped semiconductor materials, which are widely used in the fields like liquid crystal displays, touch screens and solar cells. They exhibit a high conductivity close to that of metal, because of a large number of free electrons produced by heavy doping and high degeneracy. Moreover, TCOs maintain larger band gap, which provides high visible light transmittance. As a kind of TCOs material, indium tin oxide (ITO) thin film has excellent photoelectric properties, such as wide band gap, high visible light transmission, high near-infrared reflection and low resistivity. Therefore, ITO thin film becomes the most widely used TCOs in the world, with a market share of 97%.
At present, ITO thin film still has some shortcomings to be solved, such as higher cost of Indium. Moreover, ITO show poor light transmittance in the near-infrared region and brittleness, which cannot meet the requirements of modern optoelectronic devices for flexibility. With the development of science and technology and the upgrading of various electronic components, ITO thin films can no longer meet the needs of applications nowadays. How to further improve the properties of ITO thin films has become a hot research topic.
Element doping can improve the overall performance of the ITO thin film. For example, free electrons will be generated by the inequivalent replacement of high-valent metal elements. The photoelectric properties of the thin film can be enhanced by optimizing carrier concentration, carrier mobility and scattering mechanism. The mechanical properties also can be modulated by introducing impurity elements, which inhibit surface migration, the crystallization and reduce internal stress of the thin film. In addition, element doping can promote the formation of passivation layer and stable chemical bonds to deal with harsh working conditions, such as high temperature, high pressure and strong corrosive environment.
This article summarizes the research progress of element-doped ITO thin films. The effects of element doping on photoelectric properties, mechanical properties and stability of ITO thin films are introduced, respectively. Moreover, this review discusses the existing problems in current research, and the development direction of element doping in ITO thin films.
Key words:  ITO film    doping    optical and electrical properties    mechanical property    stability
发布日期:  2022-12-09
ZTFLH:  TB383  
基金资助: 国家重点研发计划项目(2018YFB2003102)
通讯作者:  *ywzsci@tju.edu.cn   
作者简介:  张亦文,天津大学材料科学与工程学院副教授、硕士研究生导师。2004年7月本科毕业于浙江大学,2009年7月在中国科学院上海硅酸盐研究所取得了材料物理与化学专业的工学博士学位,2009-2013年,在日本东北大学进行了博士后研究工作。2013年,晋升为日本东北大学助理教授。2017年回国后,入选天津市 “千人计划”青年项目。主要从事磁电复合薄膜,生物相容性功能薄膜及光电传感材料的研究工作。近年来,在磁电材料,生物相容性材料及光电传感材料领域发表论文30余篇,包括:Applied Physics Letters, Journal of Physics D-Applied Physics, Journal of Magnetism and Magnetic Materials, Corrosion Science等。申请国家发明专利8项。
引用本文:    
张亦文, 宋晚晴, 张士雨, 谢贵久, 季惠明. 元素掺杂对ITO薄膜材料性能影响的微观机制及研究进展[J]. 材料导报, 2022, 36(23): 21010015-9.
ZHANG Yiwen, SONG Wanqing, ZHANG Shiyu, XIE Guijiu, JI Huiming. Microscopic Mechanism and Research Progress of the Effects of Element Doping on the Properties of ITO Thin-film Materials. Materials Reports, 2022, 36(23): 21010015-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010015  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21010015
1 Gordon R G.In: Materials Research Society Symposium-Proceedings, Proceedings of the 1996 MRS Spring Symposium. USA, 1996, pp. 419.
2 Mochel J M. U.S. patent, US77185947A, 1951.
3 Holland L, Siddall G.Vacuum, 1953, 3(4), 375.
4 Dates H F, Davis J K. U.S. patent, US28519363A, 1967.
5 Gordon R G. U.S. patent, US4146657A, 1979.
6 Lytle W O. U.S. patent, US4832548A, 1951.
7 Mcmaster H A. U.S. patent, US46083842A, 1947.
8 Mochel J M. U.S. patent, US66655546A, 1951.
9 Choi B H,Im H B,Song J S, et al.Thin Solid Films, 1990, 194(1-2), 712.
10 Hu J, Gordon R G.Solar Cells, 1991, 30(1-4), 437.
11 Major S, Banerjee A, Chopra K L. Thin Solid Films, 1984, 122(1), 31.
12 Minami T,Nanto H, Takata S.Japanese Journal of Applied Physics, 1984, 23(5), L280.
13 Minami T, Sato H, Nanto H, et al.Japanese Journal of Applied Physics, 1985, 24(10), L781.
14 Gao L P. Synthesis and gas sensitive properties of indium oxide based nanomaterials. Ph.D. Thesis, Shanghai University, China, 2016 (in Chinese).
高利苹. 氧化铟基纳米材料的合成与气敏性能研究. 博士学位论文, 上海大学, 2016.
15 Gao P F. The study on the optoelectric properties of ITO thin films prepared by magnetron sputtering. Master's Thesis, Beijing Jiaotong University, China, 2014 (in Chinese).
高鹏飞. 磁控溅射法制备ITO薄膜及其光电性能研究. 硕士学位论文, 北京交通大学, 2014.
16 Qiu Y, Chen Y F, Zu C K, et al. Advanced Ceramics, 2016, 37(5), 303 (in Chinese).
邱阳, 陈玉峰, 祖成奎, 等. 现代技术陶瓷, 2016, 37(5), 303.
17 Qiu Y. Structure, properties and hemispherical substrate coating of ITO thin films fabricated by electron beam evaporation. Ph.D. Thesis, China Building Materials Academy, China, 2015 (in Chinese).
邱阳. 电子束蒸发ITO薄膜结构、性能及球形基底薄膜制备. 博士学位论文, 中国建筑材料科学研究总院, 2015.
18 Xiong Z C, Zhang Z J, Mao Y T, et al. Chinese Journal of Liquid Crystals and Displays, 2013, 28(5), 703 (in Chinese).
熊智淳, 张哲娟, 茅艳婷, 等. 液晶与显示,2013, 28(5), 703.
19 Jiang C C. Automatic optic inspection for defects of ITO patterns in capacitive touch panel. Ph.D.Thesis, South China University of Technology, China, 2016 (in Chinese).
姜长城. 电容触摸屏基板ITO电路缺陷自动光学检测关键技术研究. 博士学位论文, 华南理工大学, 2016.
20 Du J, Chen X L, Liu C C, et al. Journal of Optoelectronics Laser, 2014, 25(2), 286 (in Chinese).
杜建, 陈新亮, 刘彩池, 等. 光电子激光, 2014, 25(2), 286.
21 Jiang Z R.Development and Application of Materials, 2010, 25(4), 68 (in Chinese).
江自然. 材料开发与应用, 2010, 25(4), 68.
22 Chen H F, Xue Y J. Surface Technology, 2016, 45(10), 56 (in Chinese).
陈海峰, 薛莹洁. 表面技术, 2016, 45(10), 56.
23 Yang C H, Lee S C, Lin T C, et al. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 134(1), 68.
24 Li Z Y, Liu Y, Liu H. Journal of Naval University of Engineering, 2011, 23(4), 43 (in Chinese).
李竹影, 刘冶, 刘辉. 海军工程大学学报, 2011, 23(4), 43.
25 Kang Y M, Kwon S H, Choi J H, et al. Thin Solid Films, 2010, 518(11), 3081.
26 Ma Y. Study on film preparation and properties of ZnO. Ph. D. Thesis, Chongqing University, China, 2004 (in Chinese).
马勇. ZnO薄膜制备及性质研究. 博士学位论文, 重庆大学, 2004.
27 Chakraborty D, Kaleemulla S, Rao N M, et al. In: 62nd DAE Solid State Physics Symposium, AIP Conference Proceedings. Mumbai, 2018, pp. 120002.
28 Ali H M.Physica Status Solidi A-Applications and Materials Science, 2005, 202(14), 2742.
29 Di Y H, Cao X M. Tianjin Metallurgy, 2004(5), 45 (in Chinese).
邸英浩, 曹晓明. 天津冶金, 2004(5), 45.
30 Yu H G, Yu J G, Guo R, et al. Materials Review, 2003, 17(6), 31 (in Chinese).
余火根, 余家国, 郭瑞, 等. 材料导报, 2003, 17(6), 31.
31 Kim J K, Choi Y G. Thin Solid Films, 2009, 517(17), 5084.
32 Gan G Y, Guo Y Z, Su Y S. Journal of Kunming University of Science and Technology, 1997, 22(1), 146 (in Chinese).
甘国友, 郭玉忠, 苏云生. 昆明理工大学学报, 1997, 22(1), 146.
33 Cheng L S, Sun B S, Zhong J M, et al. Rare Metals Letters, 2008, 27(3), 10 (in Chinese).
成立顺, 孙本双, 钟景明, 等. 稀有金属快报, 2008, 27(3), 10.
34 Nakasa A, Adavhi M, Usami H, et al.Thin Solid Films, 2006, 498(1-2), 240.
35 Meng Q Z. The preparation technology and mechanisms of ITO transparent conductive films. Master's Thesis, Zhejiang Normal University, China, 2013 (in Chinese).
孟庆哲. ITO透明导电薄膜制备工艺及机理的研究. 硕士学位论文, 浙江师范大学, 2013.
36 Kang S, Cho S, Song P.Thin Solid Films, 2014, 559, 92.
37 Jung T D, Song P K.Current Applied Physics, 2011, 11(3), S314.
38 Jung T, Kim S, Song P.Surface and Coatings Technology, 2010, 205, S318.
39 Li S T, Qiao X L, Chen J G. The Chinese Journal of Nonferrous Metals, 2006, 16(4), 688 (in Chinese).
李世涛, 乔学亮, 陈建国. 中国有色金属学报, 2006, 16(4), 688.
40 Hamberg I, Granqvist C G. Journal of Applied Physics, 1986, 60(11), R123.
41 Chung S M, Shin J H, Cheong W S, et al. Ceramics International. 2012, 38. S617.
42 Abe Y, Ishiyama N.Journal of Materials Science, 2006, 41(22), 7580.
43 Kim H, Horwitz J S, Kushto G P, et al.Applied Physics Letters, 2001, 78(8), 1050.
44 Ma C H, Ma R X, Li S N, et al. Rare Metal Materials and Engineering, 2013, 42(5), 1043 (in Chinese).
马春红, 马瑞新, 李士娜, 等. 稀有金属材料与工程, 2013, 42(5), 1043.
45 Huang J Y, Fan G H, Zhang Y. Transactions of Materials and Heat Treatment, 2010, 31(7), 25 (in Chinese).
黄俊毅, 范广涵, 章勇. 材料热处理学报, 2010, 31(7), 25.
46 Zhang C W, Wang S C, Liu Z H, et al. Microelectronics, 2012, 42(1), 111 (in Chinese).
张春伟, 王书昶, 刘振华, 等. 微电子学, 2012, 42(1), 111.
47 Yang M, Feng J, Li G, et al.Journal of Crystal Growth, 2008, 310(15), 3474.
48 Dyer S E, Gregory O J, Amons P S, et al.Thin Solid Films, 1996, 288(1-2), 279.
49 Zhai L N, Zhou H L, Li X H, et al. Corrosion Science and Protection Technology, 2014, 26(1), 45 (in Chinese).
翟莲娜, 周化岚, 李小慧, 等. 腐蚀科学与防护技术, 2014, 26(1), 45.
50 Himmerlich M, Koufaki M, Ecke G, et al.ACS Applied Materials & Interfaces, 2009, 1(7), 1451.
51 Zhu G J, Zhang B, Xu L. Materials Protection, 2012, 45(6), 32 (in Chinese).
朱葛俊, 张波, 徐良. 材料保护, 2012, 45(6), 32.
52 Zhang B, Shao H L, Zhao P. Materials Protection, 2017, 50(3), 35 (in Chinese).
张波, 邵汉良, 赵培. 材料保护,2017,50(3),35.
53 Wang D. ITO thin film high temperature strain gauge. Master's Thesis, East China University of Science and Technology, China, 2013 (in Chinese).
王迪. ITO薄膜高温变形传感器研究. 硕士学位论文, 华东理工大学, 2013.
54 Yang S Y, Zhang C C, Yang Z Q, et al. Journal of Materials Enginee-ring, 2020, 48(4),145 (in Chinese).
杨伸勇, 张丛春, 杨卓青, 等. 材料工程, 2020, 48(4), 145.
55 Zhao X H, Wang R L, Liu Y, et al.Vacuum, 2020, 172, 109054.
56 Yang S Y, Zhang C C, Yang Z Q, et al.Journal of Alloys and Compounds, 2019, 778, 90.
[1] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[2] 赵玉辉, 张雅荣, 吴勇民, 朱蕾, 郭俊, 汤卫平. NASICON结构Na3Zr2Si2PO12固体电解质研究进展[J]. 材料导报, 2022, 36(Z1): 21050235-9.
[3] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[4] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[5] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[6] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[7] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[8] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[9] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[10] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[11] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[12] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[13] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[14] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[15] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed