Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 20120203-15    https://doi.org/10.11896/cldb.20120203
  高分子与聚合物基复合材料 |
生物质气凝胶的疏水改性及应用研究进展
翟俊俊1, 赵思1, 肖秦箭1, 李粤1, 王唯1, 徐贵贵1, 李草2,*, 匡映1,*
1 湖北工业大学生物工程与食品学院,武汉 430068
2 湖北大学材料科学与工程学院,武汉 430062
Research Progress on Hydrophobic Modification and Application of Biomass Aerogels
ZHAI Junjun1, ZHAO Si1, XIAO Qinjian1, LI Yue1, WANG Wei1, XU Guigui1, LI Cao2,*, KUANG Ying1,*
1 College of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
2 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
下载:  全 文 ( PDF ) ( 15385KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着可持续发展观逐渐成为全球共识,“环境友好”和“可持续发展”型生物可再生资源的开发日渐受到关注。以天然生物质材料为原料制成的生物质气凝胶是一种绿色环保的新型多孔材料,其不但表现出不逊于传统气凝胶材料的优良性能,如高抗压强度、高弹性、低表观密度、高孔隙率和高比表面积等,同时还拥有原料来源广泛、绿色无毒、生物相容性好以及具生物可降解性等独特优势,因此在能源、环境、电子和生物医药等领域受到广泛关注。
然而,生物质材料由于表面多含有亲水性基团(如羟基、羧基等),在实际使用过程中易吸水,从而造成气凝胶结构坍塌、力学性能下降,这对其工业应用性能的稳定性有较大影响。因此,近年来研究者们不断尝试对生物质气凝胶进行适当的疏水化处理,并对其疏水改性机制进行了细致深入的研究,取得了较为丰硕的成果。目前对于气凝胶疏水改性的方法主要有原位法、气相沉积法、表面后处理法和冷等离子体技术等,这些疏水改性手段的引入,在保证生物质气凝胶具备绿色环保优势的同时,可显著提高其耐湿性能和应用稳定性,并能进一步扩大其应用范围。
本文分别从不同组成和来源的角度,系统地对几种常见的生物质气凝胶的制备方法及疏水改性的研究进展进行了综述,并对其在吸附、隔热、药物载体、光催化、生物传感和电学等领域的应用前景进行了展望,以期为制备具有良好应用稳定性和环境友好的新型生物质气凝胶材料提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟俊俊
赵思
肖秦箭
李粤
王唯
徐贵贵
李草
匡映
关键词:  生物质材料  气凝胶  疏水改性  环境友好  耐湿性能    
Abstract: With the concept of sustainable development gradually becoming a global consensus, the exploitation of ‘environmental friendliness' and ‘sustainable development' biological renewable resources has been increasingly concerned. The biomass aerogel made from natural biomass material is a new kind of green and environment-friendly porous material. They have excellent properties which are not inferior to that of traditional aerogels, such as high compressive strength, high elasticity, low apparent density, high porosity and high specific surface area. More importantly, they also have the unique advantages of wide source of raw materials, green,non-toxicity, good biocompatibility and biodegradability, which have attracted wide attention from the fields of energy, environment, electronics and biomedicine.
However, due to the presence of hydrophilic groups (such as hydroxyl and carboxyl groups) on the surface of most biomass materials, the biomass aerogels are prone to have water absorption during practical use, resulting in the collapse of aerogel structure and the weakening of mechanical properties, and this can greatly reduce their industrial application performance. Therefore, in recent years, researchers have been trying to conduct proper hydrophobic treatments of biomass aerogels, as well as making detailed and in-depth research on the mechanisms of hydrophobicity modifications, and have achieved fruitful results. At present, the hydrophobic modification methods of aerogels include in-situ method, vapor deposition, surface post-treatment and cold plasma technology. The introduction of these hydrophobic modification methods can not only ensure that the biomass aerogels have the advantages of green environmental protection, but also significantly improve their moisture resistance and application stability, and further expand their application.
In this paper, the preparation methods of several common biomass aerogels and their research progress in hydrophobicity modification are systematically reviewed from the perspectives of different compositions and sources, and their applications prospect in the fields of adsorption, heat insulation, drug carrier, photocatalysis, biosensor and electrical fields are also presented, so as to provide innovative ideas for the preparation of new biomass aerogels with good application stability and environmental friendliness.
Key words:  biomass materials    aerogels    hydrophobic modification    environmental friendliness    moisture resistance
发布日期:  2022-12-09
ZTFLH:  TQ427.26  
基金资助: 湖北省自然科学基金(2022CFB461);湖北工业大学“111”引智基地青年学者国际合作项目(XBTK-2022006);国家自然科学基金(31401498;51773055)
通讯作者:  *licao0415@163.com;kuangying@hbut.edu.cn   
作者简介:  翟俊俊,2019年6月毕业于河南牧业经济学院,获得工学学士学位。现为湖北工业大学生物工程与食品学院研究院研究生,在匡映老师的指导下进行研究。目前主要研究领域为软物质结构与功能。
匡映,湖北工业大学生物工程与食品学院副教授、硕士研究生导师。2006年6月本科毕业于武汉大学药学院,2012年6月在武汉大学化学与分子科学学院高分子化学与物理专业取得博士学位,2012年-2014年在武汉大学-湖北中烟工业有限责任公司进行博士后研究工作。主要从事天然高分子材料的组装结构与功能研究。近年来,在天然高分子材料的组装结构与功能领域发表论文30余篇,包括Biomaterials、J Control Release、Adv Healthc Mater、Food Hydrocoll、Carbohydr Polym、J Mater Chem B等。
李草,湖北大学材料科学与工程学院教授、博士研究生导师。2007年6月毕业于武汉大学化学与分子科学学院,2012年6月在武汉大学化学与分子科学学院高分子化学与物理专业取得博士学位。主要研究方向为用于药物及基因传递的生物医用高分子材料,以及用于二氧化碳捕获的环保高分子材料。近年来,在用于药物及基因传递的生物医用高分子材料领域发表论文30余篇,包括Acta Biomater、Nano Res、J Colloid Interf Sci、Int J Biol Macromol、Microchim Acta、Mater Today Chem、Small等。
引用本文:    
翟俊俊, 赵思, 肖秦箭, 李粤, 王唯, 徐贵贵, 李草, 匡映. 生物质气凝胶的疏水改性及应用研究进展[J]. 材料导报, 2022, 36(23): 20120203-15.
ZHAI Junjun, ZHAO Si, XIAO Qinjian, LI Yue, WANG Wei, XU Guigui, LI Cao, KUANG Ying. Research Progress on Hydrophobic Modification and Application of Biomass Aerogels. Materials Reports, 2022, 36(23): 20120203-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120203  或          http://www.mater-rep.com/CN/Y2022/V36/I23/20120203
1 Kistler S S.Nature, 1931, 127(3211), 741.
2 Stergar J, Maver U.Journal of Sol-Gel Science and Technology, 2016, 77(3), 738.
3 Dong L X. Preparation and characterization of nanometer silica. Master's Thesis, Hebei University, China, 2005 (in Chinese).
董力新. 纳米二氧化硅的制备与表征. 硕士学位论文, 河北大学, 2005.
4 Liu S L, Yu T F, Hu N N, et al.Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2013, 439, 159.
5 Jiang F, Hsieh Y L.Journal of Materials Chemistry A, 2014, 2(18), 6337.
6 Ubeyitogullari A, Ciftci O N.Carbohydrate Polymers, 2016, 147, 125.
7 Alnaief M, Alzaitoun M A, García-González C A, et al.Carbohydrate Polymers, 2011, 84(3), 1011.
8 Ni X, Ke F, Xiao M, et al.International Journal of Biological Macromo-lecules, 2016, 92, 1130.
9 Wang Y X, Chen X, Kuang Y, et al.Journal of Wuhan Institute of Technology, 2017, 39(5), 443 (in Chinese).
王亦欣, 陈茜, 匡映, 等. 武汉工程大学学报, 2017, 39(5), 443.
10 Zhang Z, Wang X D, Wu Y, et al.Journal of the Chinese Ceramic Society, 2018, 46(10), 1426 (in Chinese).
张泽, 王晓东, 吴宇, 等. 硅酸盐学报, 2018, 46(10), 1426.
11 Kleemann C, Selmer I, Smirnova I, et al.Food Hydrocolloids, 2018, 83, 365.
12 Latifi F, Talebi Z, Khalili H, et al.Materials Research Express, 2018, 5(5), 055020.
13 Kim S, Seo J, Cha J, et al.Construction and Building Materials, 2013, 40(3), 501.
14 Sachithanadam M, Joshi S.Gels, 2016, 2(1), 11.
15 Asim N, Badiei M, Alghoul M A, et al.Industrial & Engineering Chemistry Research, 2019, 58(38), 17621.
16 Hüsing N, Schwertfeger F, Tappert W, et al. Journal of Non-Crystalline Solids, 1995, 186(6), 37.
17 Li W. Studies on the silica aerogel nanomaterial prepared by sol-gel method. Master's Thesis, Xiangtan University, China, 2002 (in Chinese).
李伟. 溶胶-凝胶法制备二氧化硅气凝胶纳米材料的研究. 硕士学位论文, 湘潭大学, 2002.
18 Liu C, Zhu L, Bu W, et al. Micron, 2018, 107, 94.
19 Bhushan B, Jung, Y C.Progress in Materials Science, 2011, 56(1), 1.
20 Guo Z, Liu W, Su B L.Journal of Colloid and Interface Science, 2011, 353(2), 335.
21 Nosonovsky M, Bhushan B. Multiscale dissipative mechanisms and hierarchical surfaces, Springers, 2008, pp.978.
22 Young T.Philosophical Transactions of the Royal Society of London, 1805, 95, 65.
23 Wenzel, Robert N.Journal of Physical & Colloid Chemistry, 1949, 53(9), 1466.
24 Ramiasa-MacGregor M, Mierczynska A, Sedev R, et al.Nanoscale, 2016, 8(8), 4635.
25 Milionis A,Loth E, Bayer I S. Advances in Colloid and Interface Science, 2016, 229, 57.
26 Cassie A, Baxter S.Transactions of the Faraday Society, 1944, 40, 546.
27 Gao L, Mccarthy T J.Langmuir, 2006, 22(7), 2966.
28 Li L, Roethel S, Breedveld V, et al.Cellulose, 2013, 20(6), 3219.
29 Zuo K M, Li J, Guan Q S, et al.New Chemical Materials, 2019, 47(4), 217 (in Chinese).
左克曼, 李建, 管庆顺, 等. 化工新型材料, 2019, 47(4), 217.
30 Zhang H, Gao H K, Wang Z, et al.Biomass Chemical Engineering, 2019,51(1),61 (in Chinese).
张恒, 高洪坤, 王哲, 等. 生物质化学工程, 2019, 53(1), 61.
31 Tabernero A, Baldino L, Misol A, et al.Carbohydrate Polymers, 2020, 233, 115850.
32 Wang X, Zhu K M, Peng C X, et al.Materials Reports, 2019, 33(Z1), 476 (in Chinese).
王雪, 朱昆萌, 彭长鑫, 等. 材料导报, 2019, 33(Z1), 476.
33 Du Q, Xu X H, Lin P C, et al.E-Journal of Translational Medicine, 2017, 4(4), 78 (in Chinese).
杜清, 许晓辉, 林鹏程, 等. 转化医学电子杂志, 2017, 4(4), 78.
34 Wang Y, Su Y, Wang W, et al.Carbohydrate Polymers, 2019, 226, 115242.
35 Liu H, Geng B, ChenY, et al. ACS Sustainable Chemistry & Enginee-ring, 2016, 5(1), 49.
36 Xu X, Dong F, Yang X, et al. Journal of Agricultural and Food Chemistry, 2019, 67(2), 637.
37 Li Z, Qiu J, Shi Y, et al. Cellulose, 2018, 25(5), 2987.
38 He X, Chen T, Jiang T, et al. Carbohydrate Polymers, 2021, (4), 117790.
39 Liu H Z, Chen Y F, Geng B Y, et al. Acta Polymerica Sinica, 2016, (5), 545.
40 Wang J, Liu S.Separation and Purification Technology, 2019, 221, 303.
41 Jiang F, Hsieh Y L.ACS Omega, 2018, 3, 3530.
42 Wang H Y, Gong Y T, Wang Y. RSC Advances, 2014, 4(86), 45753.
43 De France K J, Hoare T, Cranston E D.Chemistry of Materials, 2017, 29(11), 4609.
44 Lavoine N, Bergstrm L.Journal of Materials Chemistry A, 2017, 5(31), 16105.
45 Budtova T.Cellulose, 2019, 26(1), 81.
46 Mi H Y, Jing X, Politowicz A L, et al.Carbon, 2018, 132, 199.
47 Cervin N T, Aulin C, Larsson P, et al.Cellulose, 2012, 19(2), 401.
48 Fumagalli M, Ouhab D, Boisseau S M, et al.Biomacromolecules, 2013, 14(9), 3246.
49 Gu H, Zhou X,Lyu S, et al. Journal of Colloid and Interface Science, 2019, 560, 849.
50 Sai H, Fu R, Xing L, et al.ACS Applied Materials & Interfaces, 2015, 7(13), 7373.
51 Fauziyah M, Widiyastuti W, Setyawan H.IOP Conference Series Materials Science and Engineering, 2020, 778, 012019.
52 Hu Z, Berry R M, Pelton R, et al.ACS Sustainable Chemistry & Engineering, 2017, 5, 5018.
53 Zaman A, Huang F, Jiang, M, et al. Energy and Built Environment, 2020, 1(1), 60.
54 Li D, Wang Y, Sun Y, et al. Carbon, 2018, 137, 31.
55 Qin J, Chen L, Zhao C, et al. Journal of Materials Science, 2017, 52(14), 8455.
56 Zhou J, Hsieh Y L. ACS Applied Materials & Interfaces, 2018, 10(33), 27902.
57 Fatemeh R, Maleksadat H, Mehdi J, et al. Cellulose, 2018, 25, 4695.
58 Guo W, Wang X, Zhang P, et al. Carbohydrate Polymers, 2018, 195, 71.
59 Wang L J, Zhao T Y, Gong Y M, et al.Modern Chemical Industry, 2021(6),86(in Chinese).
王莉娟, 赵彤瑶, 宫玉梅, 等. 现代化工, 2021(6),86.
60 Shi W A, Ycc A, Cheng H.Carbohydrate Polymers, 2019, 231, 115744.
61 Lopez-Iglesias C, Barros J, Ardao I, et al. Carbohydrate Polymers, 2019, 204, 223.
62 Bidgoli H, Khodadadi A A, Mortazavi Y. Journal of Environmental Chemical Engineering, 2019, 7(5), 103340.
63 Philippova O E, Korchagina E V.Polymer Science Series A, 2012, 54(7), 552.
64 Aranaz I, Harris R, Heras A.Current Organnic Chemistry, 2010, 14(3), 308.
65 Mourya V K, Inamdar N N.Reactive and Functional Polymers, 2008, 68(6), 1013.
66 Tang W, Liu Z Y, Li Y, et al.Technology Innovation and Application, 2019(15), 10 (in Chinese).
唐伟, 刘志研, 李耀, 等. 科技创新与应用, 2019(15), 10.
67 Yao K D, Li J J, Yao F L, et al. Chitosan-based hydrogels functions and applications, CRC Press, US, 2011.
68 Bidgoli H, Zamani A, Taherzadeh M J. Carbohydrate Research, 2010, 345(18), 2683.
69 Dongre R. In: Chitin-Chitosan Myriad Functionalities in Science and Technology, US, 2018, pp. 1331.
70 Elanchezhiyan S S, Meenakshi S.International Journal of Biological Macromolecules, 2017, 104(SI), 1586.
71 Su C, Yang H, Zhao H, et al. Chemical Engineering Journal, 2017, 330, 423.
72 Bidgoli H, Mortazavi Y, Khodadadi A.Journal of Hazardous Materials, 2019, 366, 229.
73 Yin Z C, Sun X, Bao M T, et al.International Journal of Biological Macromolecules, 2020, 165(Pt B), 1869.
74 Yin Z C, Liu W, Bao M T, et al.Journal of Applied Polymer Science, 2021, 138(20), e50461.
75 Hu J, Zhu J, Ge S, et al.Surface and Coatings Technology, 2020, 385, 125361.
76 Hu J, Zhu J D, Ge S Z, et al.Surface and Coatings Technology, 2020, 385, 125361.
77 Zhou D, Ke W C, Chen Y K, et al.Journal of Functional Materials, 2013, 44(B06), 161 (in Chinese).
周丹, 柯炜昌, 陈义坤,等. 功能材料, 2013, 44(B06), 161.
78 Wang Y X, Chen X, Kuang Y, et al.International Journal of Low-Carbon Technologies, 2018, 13(1), 67.
79 Wang W L, Fang Y, Ni X W, et al.Carbohydrate Polymers, 2019, 224, 115129.
80 He L C. Fabricatiom and adsorption properties of amphoteric konjac glucomannan aerogels. Master's Thesis, Soochow University, China, 2018 (in Chinese).
贺成林. 两性魔芋葡甘聚糖气凝胶的制备及吸附性能研究. 硕士学位论文, 苏州大学, 2018.
81 Lian J, Li J, Wang L, et al.Nano, 2018, 13(10), 7.
82 Chen T, Li M, Zhou L, et al.ACS Sustainable Chemistry & Engineering, 2020, 8(16), 6458.
83 Zhu F.Trends in Food Science & Technology, 2019, (89), 1.
84 Du Tran T, Nguyen S T, Do N D, et al.Materials Chemistry and Physics, 2020, 253, 123363.
85 Milovanovic S, Jankovic-Castvan I, Ivanovic J, et al.Starch-Starke, 2015, 67(1-2), 174.
86 Wang L, Sánchez-Soto M, Abt T, et al.Polymer International, 2016, 65(8), 899.
87 Villegas M, Oliveira A L, Bazito R C, et al.Journal of Supercritical Fluids, 2019, 154, 104592.
88 Baudron V, Taboada M, Gurikov P, et al.Colloid and Polymer Science, 2020, 298(4), 477.
89 Kubicka M, Bakierska M, Chudzik K,et al. Nanomaterials, 2020, 10(9), 1811.
90 Cheng Y. Alginate-based aerogels: preparation, reinforcement and hydrophobic modification. Master's Thesis, Hainan University, China, 2012 (in Chinese).
成一. 海藻酸钠基气凝胶的制备、补强与疏水改性. 硕士学位论文, 海南大学, 2012.
91 Tang M W. Preparation and Properties of Functional Sodium Alginate based Aerogels. Master's Thesis, Qingdao University, China, 2019 (in Chinese).
唐茂文. 功能性海藻酸钠基气凝胶的制备及性能研究. 硕士学位论文, 青岛大学, 2019.
92 Dai J G. Biomass TiO2/alginate composite aerogels: fabrication and their applications in water Treatment. Master's Thesis, Fujian Agriculture and Forestry University, China, 2019 (in Chinese).
戴举国. TiO2/藻酸盐生物质复合气凝胶的制备及水处理应用. 硕士学位论文, 福建农林大学, 2019.
93 Yang J, Xia Y, Xu P, et al.Cellulose, 2018, 25(6), 3533.
94 Zhang Y, Zhu J, Hongbo R, et al. Journal of Sol-Gel Science and Technology, 2017, 83(1), 44.
95 Li Y. Synthesis, modification and properties of alginate-silica composite aerogels. Master's Thesis, Tianjin University, China, 2016 (in Chinese).
李芸. 海藻酸钠-二氧化硅复合气凝胶的制备、改性及其性能研究. 硕士学位论文, 天津大学, 2016.
96 Zhang X, Liu M, Wang H, et al.Carbohydrate Polymers, 2019, 208, 232.
97 Zhang X, Wang H, Cai Z, et al.ACS Sustainable Chemistry & Enginee-ring, 2018, 7(1), 332.
98 Liu X X, Liu Z M.Biomass Chemical Engineering, 2016, 50(2), 39 (in Chinese).
刘昕昕, 刘志明. 生物质化学工程, 2016, 50(2), 39.
99 Zhai J X. Study on the synthesis of starch-silica aerogels via ambient pressure drying process. Master's Thesis, Dalian University of Technology, China, 2019 (in Chinese).
翟界秀. 常压干燥制备淀粉-SiO2气凝胶的研究. 硕士学位论文, 大连理工大学, 2019.
100 Ma Q, Liu Y, Dong Z, et al.Journal of Applied Polymer Science, 2015, 132(15), 41770.
101 El Kadib A, Bousmina M.Chemistry-A European Journal, 2012, 18(27), 8264.
102 Korhonen J T, Kettunen M, Ras R H A, et al. ACS Applied Materials & Interfaces, 2011, 3(6), 1813.
103 Yuan D S, Zhang T, Guo Q, et al.Chemical Engineering Journal, 2018, 351, 622.
104 Zhu J D, Hu J, Jiang C W, et al.Carbohydrate Polymers, 2019, 207, 246.
105 Ren W, Wei Z, Xia X, et al. Journal of Nanoparticle Research, 2020, 22(7), 191.
106 Li W, Shi J, Zhao Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(4), 1831.
107 Zhu L, Zong L, Wu X, et al. ACS Nano, 2018, 12(5), 4462.
108 Zhu Y, Yang X, Cranston E D, et al.Advanced Materials, 2016, 28(35), 7652.
109 Ding L G, Yao B J, Fei L, et al.Journal of Materials Chemistry A, 2019, 7(9), 4689.
110 Chung H, Washburn N R.ACS Applied Materials & Interfaces, 2012, 4(6), 2840.
111 Meng Y, Lu J, Cheng Y, et al.International Journal of Biological Macromolecules, 2019, 135, 1006.
112 Li X, Zheng Y.Biotechnology Progress, 2019, 36(4), e2922.
113 Passauer L, Hallas T, Bäucker E, et al.ACS Sustainable Chemistry & Engineering, 2015, 3(9), 1955.
114 Feofilova E P, MysyakinaI S. Applied Biochemistry and Microbiology, 2016, 52(6), 573.
115 Guo J, Fang W, Welle A, et al.ACS Applied Materials & Interfaces, 2016, 8(49), 34115.
116 Collins M N.International Journal of Biological Macromolecules, 2019, 135, 560.
117 Meng Y, Liu T, Yu S, et al. Fuel, 2020, 278, 118376.
118 Brunow G, Lundquist K.Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1991, 45(1), 37.
119 Liu Y, Li K.Journal of Adhesion, 2006, 82(6), 593.
120 Jin F, Fan M H, Jia Q F, et al. Journal of Chemical Physics, 2017, 30(3), 348.
121 Sato H, Guengerich F P.Journal of the American Chemical Society, 2000, 122(33), 8099.
122 Truter P, Pizzi A, Vermaas H.Journal of Applied Polymer Science, 1994, 51(7), 1319.
123 Chen Y, Zhang H, Zhu Z, et al. International Journal of Biological Macromolecules, 2020, 152, 775.
124 Matsushita Y, Yasuda S.Journal of Wood Science, 2003, 49(2), 166.
125 Pan H, Sun G, Zhao T.International Journal of Biological Macromolecules, 2013, 59, 221.
126 Chatterjee S, Saito T. Chemsuschem, 2015, 8(23), 3941.
127 Gong Y T, Li M, Tian X F, et al.Liaoning Chemical Industry, 2019,48(3), 254 (in Chinese).
宫玉辉, 李萌, 田雪峰,等. 辽宁化工, 2019, 48(3), 254.
128 Wang C, Xiong Y, Fan B, et al.Scientific Reports, 2016, 6, 32383.
129 Meng Y, Liu X, Li C, et al.International Journal of Biological Macromolecules, 2019, 135, 815.
130 Jiang J, Zhang Q, Zhan X, et al.ACS Sustainable Chemistry & Engineering, 2017, 5(11), 10307.
131 Yang Y, Deng Y, Tong Z, et al. ACS Sustainable Chemistry & Engineering, 2014, 2(7), 1729.
132 Chen C, Li F, Zhang Y, et al.Chemical Engineering Journal, 2018, 350, 173.
133 Arboleda J C, Hughes M, Lucia L A, et al.Springer Journal, 2013, 20(5), 2417.
134 Yun Y S, Cho S Y, Jin H J, et al. Macromolecular Research, 2014, 22(5), 509.
135 Selmer I, Kleemann C, Kulozik U, et al.The Journal of Supercritical Fluids, 2015, 106, 42.
136 Alatalo S M, Qiu K, Preuss K, et al.Carbon, 2016, 10, 622.
137 Kleemann C, Schuster R, Rosenecker E,et al. Food Hydrocolloids, 2020, 101, 105534.
138 Xia T L. Study on the preparation, modification and application of whey protein aerogel. Master's Thesis, Jiangnan University, China, 2018 (in Chinese).
夏天利. 乳清蛋白气凝胶的制备、改性及应用研究. 硕士学位论文, 江南大学, 2018.
139 Fitzpatrick S E, Deb-Choudhury S, Ranford S, et al. Journal of Materials Science, 2020, 55(11), 4848.
140 Ahmadi M, Madadlou A, Saboury A A.Food Chemistry, 2016, 196(1), 1016.
141 Kaya M, Tabak A.Journal of Polymers and the Environment, 2019, 28(1), 323.
142 Zhu L, Wang Y, Wang Y, et al. Microporous & Mesoporous Materials, 2017, 241, 285.
143 Jing Z, Ding J, Zhang T, et al. Food and Bioproducts Processing, 2019, 115,134.
144 Han S, Sun Q, Zheng H, et al. Carbohydrate Polymers, 2016, 136, 95.
145 Lei E, Li W, Ma C, et al. Materials Chemistry and Physics, 2018, 214, 291.
146 Wang Y, Zhu L, Zhu F, et al.Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 351.
147 Yang W J, Yuen A C Y, Li A, et al. Cellulose, 2019, 26(11), 6449.
148 Wu X D, Song Z H, Wang W, et al. Journal of Nanjing Tech University(Natural Science Edition), 2020, 42(4), 405 (in Chinese).
吴晓栋, 宋梓豪, 王伟, 等. 南京工业大学学报(自然科学版), 2020, 42(4), 405.
149 Mu R J, Pang J, Wang M, et al.Journal of Tropical Biology, 2016, 7950, 164 (in Chinese).
穆若郡, 庞杰, 王敏, 等. 热带生物学报, 2016, 7(2), 164.
150 Lu Y Q, Yuan W Z.ACS Applied Materials & Interfaces, 2017, 9(34), 29167.
151 Yu R, Shi Y Z, Yang D Z, et al.ACS Applied Materials & Interfaces, 2017, 9(26), 21809.
152 Liu Y, Xiong, Q, Song H, et al.Cellulose, 2019, 26(4), 2573.
153 Wang L, Mu R J, Lin L Z, et al.International Journal of Biological Macromolecules, 2019, 133, 693.
154 García-González C A, Jin M, Gerth J, et al.Carbohydrate Polymers, 2015, 117, 797.
155 Rudaz C, Courson R, Bonnet L, et al. Biomacromolecules, 2014, 15 (6), 2188.
156 Réti C, Casetta M, Duquesne S, et al.Polymers for Advanced Technologies, 2010, 19(6), 628.
157 Han F, Liu Q, Lai X, et al.Progress in Organic Coatings, 2014, 77(5),975.
158 Shen D K, Gu S, Bridgwater A V.Carbohydrate Polymers, 2010, 82(1), 39.
159 Shang K, Liao W, Wang J, et al.ACS Applied Materials & Interfaces, 2016, 8, 643.
160 Xiao Y, Zheng Y, Wang X, et al.Journal of Applied Polymer Science, 2014, 131(19), 40845.
161 Kaya M.Journal of Applied Polymer Science, 2017, 134(38), 45315.
162 Han Y, Zhang X, Wu X, et al.ACS Sustainable Chemistry & Enginee-ring, 2015, 3(8), 1853.
163 Wei W, Hu H, Huang Z, et al. Journal of Supercritical Fluids, 2019, 147, 33.
164 Briscoe J, Marinovic A, Sevilla M, et al. Angewandte Chemie-International Edition, 2015, 54(15), 4463.
165 Marinovic A, Kiat L S, Dunn S, et al. Chemsuschem, 2017, 10(5), 1004.
166 Djellabi R, Zhang L Q, Yang B, et al. Separation & Purification Technology, 2019, 229, 115830.
167 Li P, Kong C, Shang Y, et al.Nanoscale, 2013, 5(18), 8472.
168 Nevoltris D, Lombard B, Dupuis E, et al.ACS Nano, 2015, 9(2), 1388.
169 Gao N, Zhou W, Jiang X, et al.Nano Letters, 2015, 15(3), 2143.
170 Zhao M, Cai B, Ma Y, et al.Nanoscale, 2014, 6(8), 4052.
171 Srivastava S, Kumar V, Ali M A, et al.Nanoscale, 2013, 5(7), 3043.
172 Li Y, Zhao M, Chen J, et al. Sensors and Actuators B: Chemical, 2016, 232, 750.
173 Sun Q, Xu M, Bao S J, et al. Nanotechnology, 2015, 26(11), 115602.
174 Li R, Cui F, Zhu H, et al. Biosensors & Bioelectronics, 2018, 119, 156.
175 Sun Y, Lin Y, Sun W, et al. Analytica Chimica Acta, 2019, 1089, 152.
176 Huang J, Li D, Zhao M, et al. Chemical Engineering Journal, 2019, 373, 1357.
177 Sui Z, Meng Y, Xiao P, et al. ACS Applied Materials & Interfaces, 2015, 7, 1431.
178 Huang H, Liu C, Zhou D, et al. Journal of Materials Chemistry A, 2015, 3, 4983.
179 Butt M T Z, Preuss K, Titirici M M, et al. Materials, 11(7), 1171.
180 Wang J, Jin Y, Zhao C, et al.Applied Surface Science, 2018, 458(15), 1035.
181 Zhao H B, Yuan L, Fu Z B, et al. ACS Applied Materials & Interfaces, 2016, 8(15), 9917.
182 Li J, Wang X, Wang H, et al. Environmental Science Nano, 2017, 4(5), 1114.
[1] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[2] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[3] 张勇, 高相东, 姚佳祺, 吴永庆, 赵祥. SiO2-Al2O3气凝胶及纤维增强复合材料制备技术研究进展[J]. 材料导报, 2022, 36(23): 21030207-9.
[4] 邢悦, 井致远, 陈永雄, 任素娥, 梁秀兵. 航空航天用气凝胶材料的研究进展[J]. 材料导报, 2022, 36(22): 22010024-15.
[5] 师建军, 王伟, 朱伟, 梁科, 孔磊, 杨云华, 朱世鹏, 张莹, 李宇. 柔性气凝胶材料的制备及应用研究进展[J]. 材料导报, 2022, 36(22): 22040393-9.
[6] 孙承月, 郭鑫鑫, 吴忧, 曹争利, 王豪, 琚丹丹, 王岩, 吴宜勇. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 22040378-8.
[7] 雷尧飞, 沈宇新, 艾素芬, 董薇, 陈浩, 张鹏飞, 刘佳. 聚酰亚胺气凝胶及其薄型复合材料的制备和性能研究[J]. 材料导报, 2022, 36(22): 22040282-4.
[8] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[9] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[10] 刘颖, 黄艳辉, 刘贤淼. 气凝胶型轻木基复合材料的研究进展[J]. 材料导报, 2022, 36(15): 21010182-9.
[11] 严蛟, 邝旻翾, 胡宏林, 孔磊, 马慧玲, 张秀芹. 间苯二酚-甲醛基酚醛/碳气凝胶微观结构调控研究进展[J]. 材料导报, 2022, 36(12): 20090342-10.
[12] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[13] 张凯, 桂泰江, 吴连锋, 丛巍巍, 吕钊. 仿生物天然防污策略的研究与发展[J]. 材料导报, 2021, 35(z2): 550-553.
[14] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[15] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed