Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22040393-9    https://doi.org/10.11896/cldb.22040393
  宇航材料 |
柔性气凝胶材料的制备及应用研究进展
师建军1,2,*, 王伟1,2,*, 朱伟3,*, 梁科3, 孔磊1,2, 杨云华1,2, 朱世鹏1,2, 张莹1,2, 李宇4
1 航天材料及工艺研究所,北京 100076
2 先进功能复合材料技术重点实验室,北京 100076
3 华南理工大学生物科学与工程学院,广州 510006
4 中国运载火箭技术研究院空间物理重点实验室, 北京 100076
Research Progress on Preparation and Application of Flexile Aerogel Materials
SHI Jianjun1,2,*, WANG Wei1,2,*, ZHU Wei3,*, LIANG Ke3, KONG Lei1,2, YANG Yunhua1,2, ZHU Shipeng1,2, ZHANG Ying1,2, LI Yu4
1 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
2 Science and Technology on Advanced Functional Composite Laboratory, Beijing 100076, China
3 School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
4 Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
下载:  全 文 ( PDF ) ( 4309KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 气凝胶是一种纳米级多孔固体材料,具有高比表面积、极高的孔隙率、极低的密度、极低的热导率等优点,但也存在脆性高、柔韧性差的问题。近年来,具有良好压缩回弹特性和抗弯折性能的柔性气凝胶克服了传统气凝胶柔韧性差的缺点,受到研究人员的广泛关注。本文首先概括了柔性气凝胶的种类,根据气凝胶材料组成成分的不同,将其分为氧化硅柔性气凝胶、碳基柔性气凝胶、生物质柔性气凝胶和纤维质柔性气凝胶;然后,系统总结了柔性气凝胶常用的制备方法,如溶胶-凝胶、老化、干燥等工艺,对比分析了不同制备工艺生产的气凝胶在性能上的差异;此外,介绍了柔性气凝胶在环保、光学、生物医学、柔性电子传感器以及航空航天等领域的应用;最后对柔性气凝胶的发展做了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
师建军
王伟
朱伟
梁科
孔磊
杨云华
朱世鹏
张莹
李宇
关键词:  柔性气凝胶  溶胶-凝胶  氧化硅  力学性能    
Abstract: Aerogel is a nano-scale porous solid material, which has the advantages of high specific surface area, extremely high porosity, extremely low density and extremely low thermal conductivity, but also has the problems of high brittleness and poor flexibility. In recent years, flexible aero-gels with prominent compression-resilience properties and flexural resistance have overcome the shortcomings of poor flexibility of traditional aerogels, and thus receive extensive attentions. This review firstly summarizes the types of flexible aerogels according to the components, including silicon oxide-based flexible aerogel, carbon-based flexible aerogel, biomass-based flexible aerogel and fibrous-based aerogel. Then, the related traditional preparation methods, such as sol-gel, aging, drying and so on, and also the differences in properties produced by different preparation processes have been systematically summarized. Furthermore, the applications of flexible aerogels in different fields such as environmental protection, optics, biomedicine, flexible electronic sensors and aerospace have been introduced. Finally, the development of flexible aerogels has been summarized and prospected.
Key words:  flexible aerogel    sol-gel    silica    mechanical property
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  V25  
  TQ427.26  
基金资助: 国家自然科学基金(U2037206; 51702076)
通讯作者:  * shijj2016@yeah.net; 13552958862@163.com; zhuwei86@scut.edu.cn   
作者简介:  师建军,先进功能复合材料技术重点实验室、航天材料及工艺研究所研究员。2014年6月毕业于中国科学院大学化学研究所,获得理学博士学位,2014年7月到航天材料及工艺研究所工作至今。目前主要从事树脂基烧蚀防热材料、超轻质多功能复合材料、先进航天结构与功能材料等领域的应用研究工作。发表学术论文30余篇,授权专利15项,作为负责人/主要参与人主持/参与国家自然科学基金、重大基础研究、装发预研、军科委等领域科研项目10余项。
王伟,先进功能复合材料技术重点实验室,航天材料及工艺研究所研究员。2008年12月毕业于伦敦大学玛丽女王学院,获材料学博士学位。2009年7月进入航天材料及工艺研究所工作至今。目前主要从事树脂基烧蚀防热复合材料设计、制备与应用,阻燃复合材料设计、制备与应用研究工作。发表学术论文22篇,授权专利20余项,作为负责人/主要参与人主持/参与国家自然科学基金、国家863、装发预研、科工局大飞机材料专项等领域科研项目10余项。
朱伟,华南理工大学生物科学与工程学院教授、博士研究生导师。2008年北京化工大学应用化学专业本科毕业,2014年清华大学化学系博士毕业,随后先后在荷兰特温特大学和美国新墨西哥大学/桑迪亚国家实验室从事博士后研究,于2019年全职加入华南理工大学,入选国家高层次人次计划。目前主要从事生物材料与生物医药方面的研究。发表论文70余篇,包括JACS、 Adv. Mater.、Nano Lett.、Adv. Funct. Mater.等。
引用本文:    
师建军, 王伟, 朱伟, 梁科, 孔磊, 杨云华, 朱世鹏, 张莹, 李宇. 柔性气凝胶材料的制备及应用研究进展[J]. 材料导报, 2022, 36(22): 22040393-9.
SHI Jianjun, WANG Wei, ZHU Wei, LIANG Ke, KONG Lei, YANG Yunhua, ZHU Shipeng, ZHANG Ying, LI Yu. Research Progress on Preparation and Application of Flexile Aerogel Materials. Materials Reports, 2022, 36(22): 22040393-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040393  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22040393
1 Alemán J, Chadwick A V, He J, et al. Pure and Applied Chemistry, 2007, 79, 1801.
2 Du A, Zhou B, Zhang Z H, et al. Materials (Basel, Switzerland), 2013, 6, 941.
3 Bheekhun N, Abu-Talib A R, Hassan M R, et al. Advances in Materials Science and Engineering, 2013, 2013, 18.
4 Randall J P, Meador M A B, Jana S C. ACS Applied Materials & Interfaces, 2011, 3, 613.
5 Li G, Hong G, Dong D, et al. Advanced Materials,2018,30,1801754.
6 Ghaffari-Mosanenzadeh S, Tafreshi O A, Karamikamkar S, et al. Advances in Colloid and Interface Science, 2022, 304, 102646.
7 Zou L, Phule A D, Sun Y, et al. Polymer Testing, 2020, 85, 106451.
8 Yang W J, Yuen A C Y, Li A, et al. Cellulose, 2019, 26, 6449.
9 Baetens R, Jelle B P, Gustavsen A. Energy and Buildings, 2011, 43, 761.
10 Zu G Q, Kanamori K, Maeno A, et al. Angewandte Chemie International Edition, 2018, 57, 9722.
11 Zhao P J, Wang L L, Xie L F, et al. Journal of Materials Science, 2022, 57, 3360.
12 Zhan H J, Wu K J, Hu Y L, et al. Chem, 2019, 5, 1871.
13 Zhang X F, Zhang T P, Wang Z, et al. ACS Applied Materials & Interfaces, 2019, 11, 1303.
14 Yao C F, Yi J W, Lai H H, et al. Chemnanomat, 2021, 7, 950.
15 Maleki H, Montes S, Hayati-Roodbari N, et al. ACS Applied Materials & Interfaces, 2018, 10, 22718.
16 Jung S M, Qi J F, Oh D, et al. Advanced Functional Materials, 2017, 27, 1603203.
17 Su L, Wang H J, Niu M, et al. Science Advanced, 2020, 6, 6689.
18 Su L, Wang H J, Niu M, et al. ACS Nano, 2018, 12, 3103.
19 Su L, Niu M, Lu D, et al. Journal of Materials Science & Technology, 2021, 75, 1.
20 Lu D, Su L, Wang H J, et al. ACS Applied Materials & Interfaces, 2019, 11, 45338.
21 Guo P F, Su L, Peng K, et al. ACS Nano, 2022, 16, 6625.
22 Lu D, Wang H J, Su L, et al. Journal of the American Ceramic Society, 2022, 105, 2783.
23 Hu P Y, Lyu J, Fu C, et al. ACS Nano, 2020, 14, 688.
24 Liu Z W, Lyu J, Fang D, et al. ACS Nano, 2019, 13, 5703.
25 Wang B L, Li G Y, Xu L, et al. ACS Nano, 2020, 14, 16590.
26 Lyu J, Liu Z W, Wu X H, et al. ACS Nano, 2019, 13, 2236.
27 Li X, Dong G Q, Liu Z W, et al. ACS Nano, 2021, 15, 4759.
28 Awang N, Nasir A M, Yajid M A M, et al. Journal of Environmental Chemical Engineering, 2021, 9, 105437.
29 Idumah C I. Polymer-Plastics Technology and Materials, 2021, 60, 1519.
30 Zhao Y H, Zhang H, Ye Y M, et al. International Journal of Polymer Analysis and Characterization, 2021, 26, 218.
31 Maleki H, Durães L, Garcia-Gonzalez C A, et al. Advances in Colloid and Interface Science, 2016, 236, 1.
32 Kelts L W, Effinger N J, Melpolder S M. Journal of Non-crystalline So-lids, 1986, 83, 353.
33 Fidalgo A, Ciriminna R, Ilharco L M, et al. Chemistry of Materials, 2005, 17, 6686.
34 Zarzycki J. Journal of Sol-gel Science and Technology, 1997, 8, 17.
35 Hegde N D, Rao A V. Journal of Materials Science, 2007, 42, 6965.
36 Rao A V, Hegde N D, Shewale P M. Applied Surface Science, 2007, 253, 4137.
37 Hench L L, West J K. Chemical Reviews, 1990, 90, 33.
38 Strøm R A, Masmoudi Y, Rigacci A, et al. Journal of Sol-gel Science and Technology, 2007, 41, 291.
39 Kanamori K, Nakanishi K. Chemical Society Reviews, 2011, 40, 754.
40 Nadargi D Y, Latthe S S, Rao A V. Journal of Sol-gel Science and Technology, 2009, 49, 53.
41 Rao A V, Bhagat S D, Hirashima H, et al. Journal of Colloid and Interface Science, 2006, 300, 279.
42 Ziegler C, Wolf A, Liu W, et al. Angewandte Chemie International Edition, 2017, 56, 13200.
43 Nakajima A, Hashimoto K, Watanabe T. Monatshefte für Chemie/Chemical Monthly, 2001, 132, 31.
44 Zhang H F, Cooper A I. Advanced Materials, 2007, 19, 1529.
45 Chen Y M, Zhou L J, Chen L, et al. Cellulose, 2019, 26, 6653.
46 Lou C W, Zhou X Y, Liao X L, et al. Journal of Materials Science, 2021, 56, 18762.
47 Wu J W, Liang B Q, Huang J K, et al. Materials Letters, 2022, 318, 132164.
48 Wu P, Zhang B, Yu Z, et al. Journal of Applied Polymer Science, 2019, 136, 47179.
49 Tang Y F, Miao Q, Zhao K, et al. Journal of the Chinese Ceramic Society, 2013, 41(12), 1609(in Chinese).
汤玉斐,苗芊,赵康,等. 硅酸盐学报, 2013, 41(12), 1609.
50 Maleki H, Montes S, Hayati-Roodbari N, et al. ACS Applied Materials & Interfaces, 2018, 10, 22718.
51 Chen H B, Chiou B S, Wang Y Z, et al. ACS Applied Materials & Interfaces, 2013, 5, 1715.
52 Shi X L, Fan X Q, Zhu Y B, et al. Nature Communications, 2022, 13, 1119.
53 Hayase G, Kanamori K, Nakanishi K. Journal of Materials Chemistry, 2011, 21, 17077.
54 Liu C, Wu S, Yang Z, et al. ACS Omega, 2020, 5, 8638.
55 Yao C, Dong X, Gao G P, et al. Journal of Non-crystalline Solids, 2021, 562, 120778.
56 Wang J, Zhang Y L, Wei Y, et al. Microporous and Mesoporous Mate-rials, 2015, 218, 192.
57 Sarawade P B, Shao G N, Quang D V, et al.Applied Surface Science, 2013, 287, 84.
58 Kow K, Yusoff R, Aziz A R A, et al. Applied Surface Science, 2014, 301, 161.
59 Wang J T, Wang H F. Journal of Colloid and Interface Science, 2018, 530, 372.
60 Liu Q K, Frazier A W, Zhao X P, et al. Nano Energy, 2018, 48, 266.
61 Zu G, Shimizu T, Kanamori K, et al. ACS Nano, 2018, 12, 521.
62 Zu G Q, Zeng S, Yang B, et al. Journal of Materials Chemistry A, 2021, 9, 5769.
63 Zhang X F, Zhang T P, Wang Z, et al. ACS Applied Materials & Interfaces, 2019, 11, 1303.
64 Yu Z L, Qin B, Ma Z Y, et al. Advanced Materials, 2019, 31, 1900651.
65 Yao C F, Yi J W, Lai H H, et al. Chemnanomat, 2021, 7, 950.
66 Salgado M, Santos F, Rodríguez-Rojo S, et al. Journal of CO2 Utilization, 2017, 22, 262.
67 Zhang X F, Zhang T P, Wang Z, et al. ACS Applied Materials & Interfaces, 2019, 11, 1303.
68 Lei Q, Guo J M, Kong F H, et al. Journal of the American Chemical Society, 2021, 143, 6305.
69 Guo J M, Amini S, Lei Q, et al. ACS Nano, 2022, 16, 2164.
70 Guo J M, De May H, Franco S, et al. Nature Biomedical Engineering, 2022, 6, 19.
71 Kaehr B, Townson J L, Kalinich R M, et al. Proceedings of the National Academy of Sciences, 2012, 109, 17336.
72 Liu Z W, Lyu J, Fang D, et al. ACS Nano, 2019, 13, 5703.
73 Lyu J, Liu Z W, Wu X H, et al. ACS Nano 2019, 13, 2236.
74 Venkataraman M, Mishra R, Kotresh T M, et al. Textile Progress, 2016, 48, 55.
75 Oşmal Ö E, Paul R. High-performance apparel, Woodhead Publishing,UK, 2018, pp. 377.
76 Greszta A, Krzemińska S, Bartkowiak G, et al. International Journal of Materials Research, 2021, 112, 164.
77 Del Corso J, Cheatwood F, Bruce W, et al. In: 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Dublin, 2011, pp. 2510.
78 Xu X, Zhang Q Q, Hao M L, et al. Science, 2019, 363, 723.
79 Ma S Q, Wang C Y, Cong B, et al. Chemical Engineering Journal, 2022, 431, 134047.
[1] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[2] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[3] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[4] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[5] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[6] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[7] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[8] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[9] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[10] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[11] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[12] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[13] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[14] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[15] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed