Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21060214-8    https://doi.org/10.11896/cldb.21060214
  无机非金属及其复合材料 |
透明太阳能电池的研究进展
周文彩1,*, 王伟1, 刘晓鹏1, 齐帅1, 于浩1, 曾红杰1, 王川申1, 魏晓俊2
1 中国建材国际工程集团有限公司,上海 200063
2 玻璃新材料创新中心(安徽)有限公司,安徽 蚌埠 233000
Research Progress in Transparent Photovoltaics
ZHOU Wencai1,*, WANG Wei1, LIU Xiaopeng1, QI Shuai1, YU Hao1, ZENG Hongjie1, WANG Chuanshen1, WEI Xiaojun2
1 China Triumph International Engineering Co., Ltd., Shanghai 200063, China
2 Innovation Center for Advanced Glass Materials (Anhui) Co., Ltd., Bengbu 233000, Anhui, China
下载:  全 文 ( PDF ) ( 7273KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全球变暖和能源问题的日益显著,各国开始大力发展光伏产业。太阳能电池被广泛应用在建筑屋顶、幕墙以及太阳能电站。透明太阳能电池集可见光透光性和发电性能于一身,为太阳能电池开辟了新的应用领域,如建筑窗户、交通工具、农业大棚以及电子设备等。理想的透明太阳能电池应该像普通玻璃一样具有较高的透过率、显色指数以及长期稳定性,并且具有较高的光电转化效率。
目前,透明太阳能电池的研究还处于初始阶段,面临的主要挑战在于其光电转化效率和可见光透过率不能满足应用场所的需求,这是制约透明太阳能电池进一步发展的主要原因。透明太阳能电池的制备主要通过三种途径实现。一是牺牲光电转化效率提高电池的透过率。对于传统的太阳能电池材料(c-Si、CdTe、CIGS等),透过率和光电转化效率是相互对立的,光电转化效率随着透过率的增加而减小,可根据实际需求平衡光电转化效率和透过率之间的关系。二是寻求吸收紫外/近红外光(UV/NIR)的材料进行发电。理论上,吸收UV/NIR的单结透明太阳能电池在可见光透过率100%时,极限光电转化效率可达20.6%,然而由于材料以及技术方面的限制,实际制备的透明太阳能电池效率远低于理论值。三是利用太阳能荧光聚集器(LSC)来制备透明太阳能电池。该技术可实现较高的透过率和显色指数,且易于制备大尺寸的产品,被认为是取代建筑用玻璃的一种潜在技术,但是其光电转化效率较低。为了提高透明太阳能电池的光电转化效率和透过率,必须同时考虑吸光材料、透明电极、电荷传输材料以及界面等因素,减少光的反射,增加不可见光的吸收和利用。
本文归纳了透明太阳能电池的研究进展,详细介绍了透明太阳能电池的设计策略,分析了透明太阳能电池面临的挑战并对其前景进行了展望,以期为制备高性能的透明太阳能电池提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周文彩
王伟
刘晓鹏
齐帅
于浩
曾红杰
王川申
魏晓俊
关键词:  透明太阳能电池  区域选择性透光  薄膜  紫外/近红外吸收  太阳能荧光聚集器    
Abstract: To cope with global warming and the rapidly growing energy demand, great efforts have been invested into the development of photovoltaic devices, among which the solar cells are widely applied in rooftops, facades and power plants. Transparent photovoltaics (TPVs) which can provide electricity and transmit a fraction of the incident light in the visible region that can be recognized by human eyes, extend potential applications in windows, vehicles, greenhouse and electronic devices. Ideal TPV is considered as the glass possessing high average visible transmittance (AVT), high color rendering index (CRI) and long-time stability, as well as high power conversion efficiency (PCE).
Nowadays, the research on TPVs is still at the initial stage. The challenge is that the requirements of PCE and AVT cannot be simultaneously satisfied for the applications. Three routes have been reported for the manufacturing of TPVs. The first is sacrificing PCE to boost AVT. AVT and PCE are in opposition to each other for the conventional solar cells (Si, CdTe, CIGS, etc.), which indicates higher AVT of TPVs leads to lower PCE. There will be a balance between PCE and AVT according to the demand. The second is looking for UV/NIR harvesting materials for electricity generation. In theory, with 100% AVT, the UV/NIR adsorption efficiency of single-junction TPV is up to 20.6%. So far, due to the limitations of materials and technologies, the obtained PCE is far below the theoretical value. The last is utilizing the luminescent solar concentrator (LSC), which is recognized as a promising technology for the large-scale production of TPVs with high AVT and CRI but low PCE. To optimize PCE and AVT of TPVs, one needs to take into account the active layer, transparent electrode, charge transport layer and interference at the same time.
This review offers a retrospection of the research efforts with respect to the transparent photovoltaics, and provides elaborate descriptions about the strategies to implement the idea. We then pay attention to the problems of the current transparent photovoltaics and discuss the possible research directions. We have confidence that the transparent photovoltaics will foster new types of industries beyond simply expanding the application space of opaque photovoltaics.
Key words:  transparent photovoltaics    selective light-transmission    thin film    UV/NIR absorption    luminescent solar concentrator
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TM914.4  
基金资助: 上海市科委国际合作项目(SH02-KJCX-GJHZ-18520731300)
通讯作者:  *周文彩,博士,中国建材国际工程集团有限公司高级工程师。2013年6月硕士毕业于中国科学院大学应用化学专业,2016年7月于德国卡尔斯鲁厄理工学院获得物理化学博士学位,主要负责玻璃行业、光伏行业新材料和新技术的研发。已在国内外核心期刊发表论文10余篇,包括Nature Sustainability、Angewandte Chemie International Edition、Journal of Materials Chemistry、ACS Applied Materials & Interfaces等。wencai.zhou@outlook.com   
引用本文:    
周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
ZHOU Wencai, WANG Wei, LIU Xiaopeng, QI Shuai, YU Hao, ZENG Hongjie, WANG Chuanshen, WEI Xiaojun. Research Progress in Transparent Photovoltaics. Materials Reports, 2023, 37(8): 21060214-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060214  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21060214
1 Heinstein P, Ballif C, Aebi L E P. Green, 2013, 3(2), 125.
2 Lee K, Um H D, Choi D, et al. Cell Reports Physical Science, 2020, 1(8), 100143.
3 Traverse C J, Pandey R, Barr M C, et al. Nature Energy, 2017, 2(11), 849.
4 Nguyen T T, Patel M, Kim J. Solar Energy Materials and Solar Cells, 2020, 217, 110708.
5 Shockley W, Queisser H J. Journal of Applied Physics, 1961, 32(3), 510.
6 Lunt R R. Applied Physics Letters, 2012, 101(4), 043902.
7 Yang C, Sheng W, Moemeni M, et al. Advanced Energy Materials, 2021, 11(12), 2003581.
8 Almosni S, Delamarre A, Jehl Z, et al. Science and Technology of Advanced Materials, 2018, 19(1), 336.
9 León K, Mery D, Pedreschi F, et al. Food Research International, 2006, 39(10), 1084.
10 Yang C, Liu D, Bates M, et al. Joule, 2019, 3(8), 1803.
11 Della Gaspera E, Peng Y, Hou Q, et al. Nano Energy, 2015, 13, 249.
12 Peng C, Huang Y, Wu Z. Energy and Buildings, 2011, 43(12), 3592.
13 Craciunescu D, Fara L, Dabija A M, et al. IOP Conference Series: Materials Science and Engineering, 2019, 471, 112015.
14 Takeoka A, Kouzuma S, Tanaka H, et al. Solar Energy Materials and Solar Cells, 1993, 29(3), 243.
15 Yoon J, Baca A J, Park S I, et al. Nature Materials, 2008, 7(11), 907.
16 Yano A, Onoe M, Nakata J. Biosystems Engineering, 2014, 122, 62.
17 Lee K, Kim N, Kim K, et al. Joule, 2020, 4(1), 235.
18 Yang R, Lee C H, Cui B, et al. Materials Science and Engineering: B, 2018, 229, 1.
19 Husain A A F, Hasan W Z W, Shafie S, et al. Renewable and Sustai-nable Energy Reviews, 2018, 94, 779.
20 Yeop Myong S, Won Jeon S. Solar Energy Materials and Solar Cells, 2015, 143, 442.
21 Wook Lim J, Shin M, Lee D J, et al. Solar Energy Materials and Solar Cells, 2014, 128, 301.
22 Mutalikdesai A, Ramasesha S K. Thin Solid Films, 2017, 632, 73.
23 Shin M J, Jo J H, Cho A, et al. Solar Energy, 2019, 181, 276.
24 Song Y, Chang S, Gradecak S, et al. Advanced Energy Materials, 2016, 6(20), 1600847.
25 Li X, Meng H, Shen F, et al. Dyes and Pigments, 2019, 166, 196.
26 Hu Z, Wang J, Wang Z, et al. Nano Energy, 2019, 55, 424.
27 Passoni L, Fumagalli F, Perego A, et al. Nanotechnology, 2017, 28(24), 245603.
28 Zhang X, Hägglund C, Johansson E M J. Energy & Environmental Science, 2017, 10(1), 216.
29 Bag S, Durstock M F. Nano Energy, 2016, 30, 542.
30 Lee H J, Cho S P, Na S I, et al. Journal of Alloys and Compounds, 2019, 797, 65.
31 Jørgensen M, Norrman K, Gevorgyan S A, et al. Advanced Materials, 2012, 24(5), 580.
32 Wang R, Mujahid M, Duan Y, et al. Advanced Functional Materials, 2019, 29(47), 1808843.
33 Albaladejo Siguan M, Baird E C, Becker Koch D, et al. Advanced Energy Materials, 2021, 11(12), 2003457.
34 Fu S C, Zhong X L, Zhang Y, et al. Energy and Buildings, 2020, 225, 110313.
35 Khandelwal K, Biswas S, Mishra A, et al. Journal of Materials Chemistry C, 2022, 10(1), 13.
36 Chen C C, Dou L, Zhu R, et al. ACS Nano, 2012, 6(8), 7185.
37 Liu D, Yang C, Lunt R R. Joule, 2018, 2(9), 1827.
38 Kim S, Patel M, Nguyen T T, et al. Nano Energy, 2020, 77, 105090.
39 Wang W, Yan C, Lau T K, et al. Advanced Materials, 2017, 29(31), 1701308.
40 Yu W, Jia X, Long Y, et al. ACS Applied Materials & Interfaces, 2015, 7(18), 9920.
41 Pastorelli F, Romero Gomez P, Betancur R, et al. Advanced Energy Materials, 2015, 5(2), 1400614.
42 Zhang K, Qin C, Yang X, et al. Advanced Energy Materials, 2014, 4(11), 1301966.
43 Wang W, Yan C, Lau T K, et al. Advanced Materials, 2017, 29(31), 1701308.
44 Liu F, Zhou Z, Zhang C, et al. Advanced Materials, 2017, 29(21), 1606574.
45 Lin H W, Chen Y H, Huang Z Y, et al. Organic Electronics, 2012, 13(9), 1722.
46 Naim W, Novelli V, Nikolinakos I, et al. JACS Au, 2021, 1(4), 409.
47 Yang C, Moemeni M, Bates M, et al. Advanced Optical Materials, 2020, 8(8), 1901536.
48 Wu K, Li H, Klimov V I. Nature Photonics, 2018, 12(2), 105.
49 Yang C, Lunt R R. Advanced Optical Materials, 2017, 5(8), 1600851.
50 Zhao Y, Lunt R R. Advanced Energy Materials, 2013, 3(9), 1143.
51 Zhao Y, Meek G A, Levine B G, et al. Advanced Optical Materials, 2014, 2(7), 606.
52 Yang C, Liu D, Renny A, et al. Journal of Luminescence, 2019, 210, 239.
53 Li Y, Guo X, Peng Z, et al. Proceedings of the National Academy of Sciences, 2020, 117(35), 21147.
54 Tang Z, George Z, Ma Z, et al. Advanced Energy Materials, 2012, 2(12), 1467.
55 Chang C Y, Zuo L, Yip H L, et al. Advanced Energy Materials, 2014, 4(7), 1301645.
56 Chen S, Yao H, Hu B, et al. Advanced Energy Materials, 2018, 8(31), 1800529.
57 Arnold M S, Zimmerman J D, Renshaw C K, et al. Nano Letters, 2009, 9(9), 3354.
58 Young M, Suddard Bangsund J, Patrick T J, et al. Advanced Optical Materials, 2016, 4(7), 1028.
59 Rowell M W, Mcgehee M D. Energy & Environmental Science, 2011, 4(1), 131.
60 Shen J J. Synthetic Metals, 2021, 271, 116582.
61 Liu Z, You P, Liu S, et al. ACS Nano, 2015, 9(12), 12026.
62 Xiao S, Chen H, Jiang F, et al. Advanced Materials Interfaces, 2016, 3(17), 1600484.
63 Zhu R, Chung C H, Cha K C, et al. ACS Nano, 2011, 5(12), 9877.
64 Song Y, Zhang K, Dong S, et al. ACS Applied Materials & Interfaces, 2020, 12(16), 18473.
65 Schmidt H, Flügge H, Winkler T, et al. Applied Physics Letters, 2009, 94(24), 243302.
66 Ke W, Chen C, Spanopoulos I, et al. Journal of the American Chemical Society, 2020, 142(35), 15049.
67 Sohn H, Park C, Oh J M, et al. Materials, 2019, 12(16), 2526.
68 Singh M, Rana S, Singh A K. Colloid and Interface Science Communications, 2022, 46, 100563.
69 Hu L, Kim H S, Lee J Y, et al. ACS Nano, 2010, 4(5), 2955.
70 Bryant D, Greenwood P, Troughton J, et al. Advanced Materials, 2014, 26(44), 7499.
71 Um H D, Hwang I, Kim N, et al. Advanced Materials Interfaces, 2015, 2(16), 1500347.
72 Xiong Z, Walsh T M, Aberle A G. Energy Procedia, 2011, 8, 384.
73 Burlingame Q, Huang X, Liu X, et al. Nature, 2019, 573(7774), 394.
74 Traverse C J, Chen P, Lunt R R. Advanced Energy Materials, 2018, 8(21), 1703678.
75 Sark W G J H M V, Barnham K W J, Slooff L H, et al. Optics Express, 2008, 16(26), 21773.
76 Ma S, Yuan G, Zhang Y, et al. Energy & Environmental Science, 2022.
77 Olivieri L, Caamaío Martín E, Moralejo Vázquez F J, et al. Energy, 2014, 76, 572.
78 Emmott C J M, Röhr J A, Campoy-Quiles M, et al. Energy & Environmental Science, 2015, 8(4), 1317.
79 Davy N C, Sezen Edmonds M, Gao J, et al. Nature Energy, 2017, 2(8), 17104.
80 Tong J, Song Z, Kim D H, et al. Science, 2019, 364(6439), 475.
81 Bush K A, Palmstrom A F, Yu Z J, et al. Nature Energy, 2017, 2(4), 17009.
82 Duong T, Wu Y, Shen H, et al. Advanced Energy Materials, 2017, 7(14), 1700228.
83 Fu F, Feurer T, Weiss T P, et al. Nature Energy, 2016, 2(1), 16190.
[1] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[2] 张化福, 周爱萍, 吴志明, 蒋亚东. 二氧化钒金属-绝缘相变的回线宽度及其调控研究进展[J]. 材料导报, 2023, 37(6): 21050100-10.
[3] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[4] 辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
[5] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[6] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[7] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[8] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[9] 张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
[10] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[11] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[12] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[13] 张夏宇, 魏珊珊, 黄成, 王海兰, 董孟阳, 肖雨欣, 黄荣娟, 于涛. 新型三芳基乙烯光致变色材料的设计合成及其在光擦写薄膜中的应用[J]. 材料导报, 2022, 36(6): 20120263-5.
[14] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[15] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed