Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 22030231-7    https://doi.org/10.11896/cldb.22030231
  金属与金属基复合材料 |
Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制
吴敏1, 刘健1,*, 罗霞2,*, 刘允中3, 蔡仁烨1, 徐伟1, 陈晓1
1 广东技术师范大学汽车与交通工程学院,广州 510665
2 西南石油大学新能源与材料学院,成都 610500
3 华南理工大学机械与汽车工程学院,广州 510640
Microstructure Evolution and Grain Coarsening Mechanism of Al-Cu-Mg Alloy Powder in Semi-solid State
WU Min1, LIU Jian1,*, LUO Xia2,*, LIU Yunzhong3, CAI Renye1, XU Wei1, CHEN Xiao1
1 School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
2 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
3 National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 28630KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将Al-Cu-Mg合金粉末及其粉末烧结体分别加热到833 K、843 K、853 K、863 K、873 K、883 K和893 K,并保温60 min、50 min、40 min、30 min、20 min、10 min和0 min后水冷得到其半固态微观组织。通过计算半固态粉末及其烧结体的晶粒尺寸、形状因子和晶粒粗化速率,分析其组织演变规律,同时对比分析了相同成分下粉末与致密材料在半固态下的晶粒粗化机理。结果表明:随着半固态温度的提高和保温时间的延长,粉末的晶粒尺寸增加;为避免获得粗大晶粒,Al-Cu-Mg合金半固态粉末成形的参考温度应低于883 K,保温时间应在40 min以内;随着温度的提高,粉末的晶粒粗化速率增大,在883 K时达到19 μm3/s,但远远小于同成分下致密材料的粗化速率,这是半固态粉末成形技术能够获得细小组织的一个重要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴敏
刘健
罗霞
刘允中
蔡仁烨
徐伟
陈晓
关键词:  Al-Cu-Mg合金  半固态粉末  组织演变  晶粒长大  粗化速率    
Abstract: The Al-Cu-Mg alloy powder and its sintered body were heated to 833 K, 843 K, 853 K, 863 K, 873 K, 883 K and 893 K, respectively, and then were water-cooled to obtain their semi-solid microstructures after being held for 60 min, 50 min, 40 min, 30 min, 20 min, 10 min and 0 min, respectively. By calculating the grain size, shape factor and grain coarsening rate of the semi-solid powder and its sintered body, the grain coarsening mechanism of the powder and the dense material (with the same composition) at semi-solid state was compared and analyzed. The results show that with the increase of the semi-solid temperature and the holding time, the grain size of the powder increases. The temperature of Al-Cu-Mg alloy during semi-solid powder forming is recommended less than 883 K, and the holding time is supposed to be within 40 min. As the temperature increases, the coarsening rate of powder at a semisolid state increases, and the coarsening rate reaches 19 μm3/s at 883 K, which is much less than that of the dense material with the same composition, however. This is an important reason why the semi-solid powder forming technology can obtain fine microstructure.
Key words:  Al-Cu-Mg alloy    semi-solid powder    microstructure evolution    grain growth    coarsening rate
发布日期:  2023-01-03
ZTFLH:  TG306  
基金资助: 广州市科技计划项目(202102080110);国家金属材料近净成形工程技术研究中心重点实验室开放基金(2018006);四川省科技计划(2020YFH0151);国家自然科学基金(51704255)
通讯作者:  aloysliu@gpnu.edu.cn;winifreed@163.com   
作者简介:  吴敏,广东技术师范大学汽车与交通工程学院教师。2018年于华南理工大学材料加工专业博士毕业,之后到广东技术师范大学工作至今。目前主要从事汽车零部件半固态粉末成型等方面的研究工作。发表SCI论文10余篇,包括Materials Science & Engineering A、JOM、Materials Research Express、Materials、Acta Metallurgica Sinica等。
刘健,广东技术师范大学汽车与交通工程学院教师。2018年于华南理工大学材料加工工程专业博士毕业,之后在广东技术师范大学工作至今。目前主要从事金属基复合材料、新能源汽车动力电池散热等方面的研究工作。发表SCI收录论文8篇,包括Journal of Alloys and Compounds、Vacuum、Transactions of the Indian Institute of Metals、Journal of Iron and Steel Research、International、Materials Research Express等。
罗霞,西南石油大学新能源与材料学院副教授、硕士研究生导师。2015年6月于华南理工大学国家金属材料近净成形工程技术研究中心获工学博士学位(硕博连读),随后进入德国亥姆赫兹吉斯特哈赫特材料与海岸研究中心(HZG)进行博士后研究,2016年10月进入西南石油大学工作至今。目前主要从事近净成形技术(半固态粉末成形、粉末注射成形、粘结剂喷射打印)及其数值模拟、金属生物材料、金属基复合材料等方面的研究工作。发表SCI论文20余篇,包括Powder Technology、Journal of Materials Proce-ssing Technology、Metallurgical and Materials Transactions A、Materials Letters、JOM、Acta Metallurgica Sinica等。
引用本文:    
吴敏, 刘健, 罗霞, 刘允中, 蔡仁烨, 徐伟, 陈晓. Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制[J]. 材料导报, 2022, 36(24): 22030231-7.
WU Min, LIU Jian, LUO Xia, LIU Yunzhong, CAI Renye, XU Wei, CHEN Xiao. Microstructure Evolution and Grain Coarsening Mechanism of Al-Cu-Mg Alloy Powder in Semi-solid State. Materials Reports, 2022, 36(24): 22030231-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030231  或          http://www.mater-rep.com/CN/Y2022/V36/I24/22030231
1 Luo X, Wu M, Fang C, et al. JOM, 2019, 71 (12), 4349.
2 Guo Y M, Yi D Q, Zhang J Y, et al. Powder Metallurgy Technology, 2020, 38(3), 163 (in Chinese).
郭宇明, 易丹青, 张嘉艺, 等. 粉末冶金技术, 2020, 38(3), 163.
3 Liu J W, Jiang D C, Zhou X X, et al. Powder Technology, 2019, 343, 95.
4 Zyguła K, Lypchanskyi O, Wojtaszek M, et al. IOP Conference Series Materials Science and Engineering, 2018, 461, 012.
5 Luo X, Fang C, Zhou F, et al. Materials Research Express, 2019, 6, 076528.
6 Li P B, Chen T J, Qin H. Materials and Design, 2016, 112, 34.
7 Luo X, Li M Y, Ren J, et al. JOM, 2022, 74(3), 899.
8 Javdani A, Daei-Sorkhabi A H. Transactions of Nonferrous Metals Society of China, 2018, 28(7), 1298.
9 Jiang J F, Zhang Y H, Liu Y Z, et al. Acta Metallurgica Sinica, 2021, 57(6), 703 (in Chinese).
姜巨福, 张逸浩, 刘英泽等. 金属学报, 2021, 57(6), 703.
10 Tian Y F, Chen G, Han F, et al. Journal of Netshape Forming Engineering, 2018, 10(2), 31 (in Chinese).
田寅丰, 陈刚, 韩飞等. 精密成形工程, 2018, 10(2), 31.
11 Zhao Y P, Chen Y N, Hao J M, et al. Hot Working Technology, 2016, 45(20), 1 (in Chinese).
赵祎平, 陈永楠, 郝建民等. 热加工工艺, 2016, 45(20), 1.
12 Wu M, Liu J, Liu Y Z, et al. Materials Research Express, 2021, 8(6), 066503.
13 Wu M, Liu Y Z, Zeng Z Y B, et al. JOM, 2017(69), 763.
14 Wu M, Liu Y Z, Wang T, et al. Materials Science & Engineering A, 2016, 674, 144.
15 Li P B, Chen T J, Zhang S Q, et al. Metals, 2015, 5, 547.
16 Mo Z Q, Liu Y Z, Geng J J, et al. Materials Science & Engineering A, 2016, 652, 305.
17 Mo Z Q, Liu Y Z, Jia H F, et al. Transactions of Nonferrous Metals Society of China, 2015, 25, 3181.
18 Atkinson H V, Liu D. Materials Science & Engineering A, 2008, 496, 439.
19 Kim H S, Stone I C, Cantor B. Journal of Materials Science, 2008, 43(4), 1292.
20 Tzimas E, Zavaliangos A. Materials Science & Engineering A, 2000, 289(1), 228.
21 Gu C X, Liu Y Z, Jia H F. Materials Science and Engineering of Powder Metallurgy, 2015, 20(3), 368 (in Chinese).
顾才鑫, 刘允中, 贾惠芳. 粉末冶金材料科学与工程, 2015, 20(3), 368.
22 Deepak-Kumar S, Acharya M, Mandal A, et al. Transactions of the Indian Institute of Metals, 2015, 68(6), 1075.
23 Zhang X H, Chen Q, Li M, et al. Materials Letters, 2018, 237, 141.
24 Zhang L, Li W, Yao J P. Journal of Alloys & Compounds, 2013, 554(6), 156.
25 Lu Y, Li M, Niu Y, et al. Journal of Materials Engineering & Performance, 2008, 17(1), 25.
26 Ferrante M, Freitas E D. Materials Science & Engineering A, 1999, 271(1-2), 172.
27 Manson-Whitton E D, Stone I C, Jones J R, et al. Acta Materialia, 2002, 50(10), 2517.
28 Haghshenas M, Zarei-Hanzaki A, Fatemi-Varzaneh S M. Materials Science & Engineering A, 2008, 480(1), 68.
29 Kliauga A M, Ferrante M. Acta Materialia, 2005, 53(2), 345.
[1] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[2] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[3] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[4] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[5] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[6] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[7] 刘松浩, 司家勇, 陈龙. 挤压态FGH4096合金室温变形及临界晶粒长大研究[J]. 材料导报, 2021, 35(14): 14107-14114.
[8] 黄同瑊, 秦宇, 晁代义, 王志雄, 宋晓霖, 张华, 程仁策. 大尺寸Al-Cu-Mg-Mn合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 325-327.
[9] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[10] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[11] 黄晓锋, 魏浪浪, 杨剑桥, 张乔乔, 尚文涛, 李旭娇. 半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响[J]. 材料导报, 2020, 34(14): 14116-14121.
[12] 何翠云, 莫文锋, 罗兵辉, 柏镇海, 张鑫. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083-12087.
[13] 石晓辉, 曹祖涵, 张敏, 郭瑞鹏, 乔珺威. 基于位错密度分析的Ti-8Al-1Mo-1V钛合金片层组织在热轧及退火过程中的演变机制[J]. 材料导报, 2020, 34(12): 12101-12104.
[14] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[15] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed