Microstructure Evolution and Grain Coarsening Mechanism of Al-Cu-Mg Alloy Powder in Semi-solid State
WU Min1, LIU Jian1,*, LUO Xia2,*, LIU Yunzhong3, CAI Renye1, XU Wei1, CHEN Xiao1
1 School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China 2 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China 3 National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
Abstract: The Al-Cu-Mg alloy powder and its sintered body were heated to 833 K, 843 K, 853 K, 863 K, 873 K, 883 K and 893 K, respectively, and then were water-cooled to obtain their semi-solid microstructures after being held for 60 min, 50 min, 40 min, 30 min, 20 min, 10 min and 0 min, respectively. By calculating the grain size, shape factor and grain coarsening rate of the semi-solid powder and its sintered body, the grain coarsening mechanism of the powder and the dense material (with the same composition) at semi-solid state was compared and analyzed. The results show that with the increase of the semi-solid temperature and the holding time, the grain size of the powder increases. The temperature of Al-Cu-Mg alloy during semi-solid powder forming is recommended less than 883 K, and the holding time is supposed to be within 40 min. As the temperature increases, the coarsening rate of powder at a semisolid state increases, and the coarsening rate reaches 19 μm3/s at 883 K, which is much less than that of the dense material with the same composition, however. This is an important reason why the semi-solid powder forming technology can obtain fine microstructure.
作者简介: 吴敏,广东技术师范大学汽车与交通工程学院教师。2018年于华南理工大学材料加工专业博士毕业,之后到广东技术师范大学工作至今。目前主要从事汽车零部件半固态粉末成型等方面的研究工作。发表SCI论文10余篇,包括Materials Science & Engineering A、JOM、Materials Research Express、Materials、Acta Metallurgica Sinica等。 刘健,广东技术师范大学汽车与交通工程学院教师。2018年于华南理工大学材料加工工程专业博士毕业,之后在广东技术师范大学工作至今。目前主要从事金属基复合材料、新能源汽车动力电池散热等方面的研究工作。发表SCI收录论文8篇,包括Journal of Alloys and Compounds、Vacuum、Transactions of the Indian Institute of Metals、Journal of Iron and Steel Research、International、Materials Research Express等。 罗霞,西南石油大学新能源与材料学院副教授、硕士研究生导师。2015年6月于华南理工大学国家金属材料近净成形工程技术研究中心获工学博士学位(硕博连读),随后进入德国亥姆赫兹吉斯特哈赫特材料与海岸研究中心(HZG)进行博士后研究,2016年10月进入西南石油大学工作至今。目前主要从事近净成形技术(半固态粉末成形、粉末注射成形、粘结剂喷射打印)及其数值模拟、金属生物材料、金属基复合材料等方面的研究工作。发表SCI论文20余篇,包括Powder Technology、Journal of Materials Proce-ssing Technology、Metallurgical and Materials Transactions A、Materials Letters、JOM、Acta Metallurgica Sinica等。
引用本文:
吴敏, 刘健, 罗霞, 刘允中, 蔡仁烨, 徐伟, 陈晓. Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制[J]. 材料导报, 2022, 36(24): 22030231-7.
WU Min, LIU Jian, LUO Xia, LIU Yunzhong, CAI Renye, XU Wei, CHEN Xiao. Microstructure Evolution and Grain Coarsening Mechanism of Al-Cu-Mg Alloy Powder in Semi-solid State. Materials Reports, 2022, 36(24): 22030231-7.
1 Luo X, Wu M, Fang C, et al. JOM, 2019, 71 (12), 4349. 2 Guo Y M, Yi D Q, Zhang J Y, et al. Powder Metallurgy Technology, 2020, 38(3), 163 (in Chinese). 郭宇明, 易丹青, 张嘉艺, 等. 粉末冶金技术, 2020, 38(3), 163. 3 Liu J W, Jiang D C, Zhou X X, et al. Powder Technology, 2019, 343, 95. 4 Zyguła K, Lypchanskyi O, Wojtaszek M, et al. IOP Conference Series Materials Science and Engineering, 2018, 461, 012. 5 Luo X, Fang C, Zhou F, et al. Materials Research Express, 2019, 6, 076528. 6 Li P B, Chen T J, Qin H. Materials and Design, 2016, 112, 34. 7 Luo X, Li M Y, Ren J, et al. JOM, 2022, 74(3), 899. 8 Javdani A, Daei-Sorkhabi A H. Transactions of Nonferrous Metals Society of China, 2018, 28(7), 1298. 9 Jiang J F, Zhang Y H, Liu Y Z, et al. Acta Metallurgica Sinica, 2021, 57(6), 703 (in Chinese). 姜巨福, 张逸浩, 刘英泽等. 金属学报, 2021, 57(6), 703. 10 Tian Y F, Chen G, Han F, et al. Journal of Netshape Forming Engineering, 2018, 10(2), 31 (in Chinese). 田寅丰, 陈刚, 韩飞等. 精密成形工程, 2018, 10(2), 31. 11 Zhao Y P, Chen Y N, Hao J M, et al. Hot Working Technology, 2016, 45(20), 1 (in Chinese). 赵祎平, 陈永楠, 郝建民等. 热加工工艺, 2016, 45(20), 1. 12 Wu M, Liu J, Liu Y Z, et al. Materials Research Express, 2021, 8(6), 066503. 13 Wu M, Liu Y Z, Zeng Z Y B, et al. JOM, 2017(69), 763. 14 Wu M, Liu Y Z, Wang T, et al. Materials Science & Engineering A, 2016, 674, 144. 15 Li P B, Chen T J, Zhang S Q, et al. Metals, 2015, 5, 547. 16 Mo Z Q, Liu Y Z, Geng J J, et al. Materials Science & Engineering A, 2016, 652, 305. 17 Mo Z Q, Liu Y Z, Jia H F, et al. Transactions of Nonferrous Metals Society of China, 2015, 25, 3181. 18 Atkinson H V, Liu D. Materials Science & Engineering A, 2008, 496, 439. 19 Kim H S, Stone I C, Cantor B. Journal of Materials Science, 2008, 43(4), 1292. 20 Tzimas E, Zavaliangos A. Materials Science & Engineering A, 2000, 289(1), 228. 21 Gu C X, Liu Y Z, Jia H F. Materials Science and Engineering of Powder Metallurgy, 2015, 20(3), 368 (in Chinese). 顾才鑫, 刘允中, 贾惠芳. 粉末冶金材料科学与工程, 2015, 20(3), 368. 22 Deepak-Kumar S, Acharya M, Mandal A, et al. Transactions of the Indian Institute of Metals, 2015, 68(6), 1075. 23 Zhang X H, Chen Q, Li M, et al. Materials Letters, 2018, 237, 141. 24 Zhang L, Li W, Yao J P. Journal of Alloys & Compounds, 2013, 554(6), 156. 25 Lu Y, Li M, Niu Y, et al. Journal of Materials Engineering & Performance, 2008, 17(1), 25. 26 Ferrante M, Freitas E D. Materials Science & Engineering A, 1999, 271(1-2), 172. 27 Manson-Whitton E D, Stone I C, Jones J R, et al. Acta Materialia, 2002, 50(10), 2517. 28 Haghshenas M, Zarei-Hanzaki A, Fatemi-Varzaneh S M. Materials Science & Engineering A, 2008, 480(1), 68. 29 Kliauga A M, Ferrante M. Acta Materialia, 2005, 53(2), 345.